精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)讨论函数的单调性;

2)当时,对于任意正实数,不等式恒成立,试判断实数的大小关系.

【答案】(1)当增;减;当减;增;(2)

【解析】

1)求出函数的导数,分类讨论,即可求解函数的单调性;

2)设,求导数判断函数的单调性,求出函数的极值,转化为,即可求解.

1)由题意,函数,则

,解得

时,在上,,函数单调递增;

上,,函数单调递减.

时,在上,,函数单调递减;

上,,函数单调递增.

综上可得:当时,函数单调递增,在单调递减;当时,函数单调递减,在单调递增.

2)当时,设

,令,即,解得

时,,即单调递增,

时,,即单调递减,

所以

要使得不等式恒成立,只需,即

所以,故实数的大小关系为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数

1)求

2)若,且,求的值.

3)画出函数在区间上的图像(完成列表并作图).

1)列表

x

0






y


1


1



2)描点,连线

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】按照我国《机动车交通事故责任强制保险条例》规定,交强险是车主必须为机动车购买的险种,若普通7座以下私家车投保交强险第一年的费用(基准保费)统一为元,在下一年续保时,实行的是保费浮动机制,保费与上一、二、三个年度车辆发生道路交通事故的情况相关联,发生交通事故的次数越多,费率也就越高,具体浮动情况如下表:

交强险浮动因素和浮动费率比率表

投保类型

浮动因素

浮动比率

上一个年度未发生有责任道路交通事故

下浮10%

上两个年度未发生有责任道路交通事故

下浮20%

上三个及以上年度未发生有责任道路交通事故

下浮30%

上一个年度发生一次有责任不涉及死亡的道路交通事故

0%

上一个年度发生两次及两次以上有责任不涉及死亡的道路交通事故

上浮10%

上一个年度发生有责任道路交通死亡事故

上浮30%

某机构为了研究某一品牌普通7座以下私家车的投保情况,随机抽取了80辆车龄已满三年的该品牌同型号私家车在下一年续保时的情况,统计得到了下面的表格:

类型

数量

20

10

10

20

15

5

(1)根据上述样本数据,估计一辆普通7座以下私家车(车龄已满3年)在下一年续保时,保费高于基准保费的概率;

(2)某销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基准保费的车辆记为事故车.

①若该销售商部门店内现有6辆该品牌二手车(车龄已满3年),其中两辆事故车,四辆非事故车.某顾客在店内随机挑选两辆车,求这两辆车中恰好有一辆事故车的概率;

②以这80辆该品牌车的投保类型的频率代替一辆车投保类型的概率.该销售商一次购进120辆(车龄已满三年)该品牌二手车,若购进一辆事故车亏损4000元,一辆非事故车盈利8000元.试估计这批二手车一辆车获得利润的平均值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】北京101中学校园内有一个“少年湖”,湖的两侧有一个音乐教室和一个图书馆,如图,若设音乐教室在A处,图书馆在B处,为测量A,B两地之间的距离,某同学选定了与A,B不共线的C处,构成△ABC,以下是测量的数据的不同方案:①测量∠A,AC,BC;②测量∠A,B,BC;③测量∠C,AC,BC;④测量∠AC,B. 其中一定能唯一确定A,B两地之间的距离的所有方案的序号是_______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设三个数成等差数列,记对应点的曲线是.

(1)求曲线的方程;

(2)已知点,点,点,过点任作直线与曲线相交于两点,设直线的斜率分别为,若,求满足的关系式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成两组,每组100只,其中组小鼠给服甲离子溶液,组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:

为事件:“乙离子残留在体内的百分比不低于”,根据直方图得到的估计值为.

(1)求乙离子残留百分比直方图中的值;

(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《中华人民共和国道路交通安全法》第47条的相关规定:机动车行经人行横道时,应当减速慢行;遇行人正在通过人行横道,应当停车让行,俗称“礼让斑马线”,《中华人民共和国道路交通安全法》 第90条规定:对不礼让行人的驾驶员处以扣3分,罚款50元的处罚.下表是某市一主干路口监控设备所抓拍的5个月内驾驶员不“礼让斑马线”行为统计数据:

月份

1

2

3

4

5

违章驾驶员人数

120

105

100

90

85

(1)请利用所给数据求违章人数y与月份之间的回归直线方程+

(2)预测该路口7月份的不“礼让斑马线”违章驾驶员人数;

(3)交警从这5个月内通过该路口的驾驶员中随机抽查了50人,调查驾驶员不“礼让斑马线”行为与驾龄的关系,得到如下2列联表:

不礼让斑马线

礼让斑马线

合计

驾龄不超过1年

22

8

30

驾龄1年以上

8

12

20

合计

30

20

50

能否据此判断有97.5的把握认为“礼让斑马线”行为与驾龄有关?

参考公式及数据:,.

0.150

0.100

0.050

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数fx)满足f(0)=2,fx)-fx-1)=2x+1,求函数fx2+1)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】命题p:x∈R,ax2﹣2ax+1>0,命题q:指数函数f(x)=ax(a>0且a≠1)为减函数,则P是q的(  )

A.充分不必要条件B.必要不充分条件

C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案