【题目】若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“孪生函数”,那么函数解析式为y=2x2-3,值域为{1,5}的“孪生函数”共有( )
A.10个
B.9个
C.8个
D.4个
科目:高中数学 来源: 题型:
【题目】某商品每件成本5元,售价14元,每星期卖出75件.如果降低价格,销售量可以增加,且每星期多卖出的商品件数与商品单价的降低值(单位:元,)的平方成正比,已知商品单价降低1元时,一星期多卖出5件.
(1)将一星期的商品销售利润表示成的函数;
(2)如何定价才能使一个星期的商品销售利润最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆(a>b>0)的左、右焦点为F1、F2,点A在椭圆上,且与x轴垂直.
(1)求椭圆的方程;
(2)过A作直线与椭圆交于另外一点B,求△AOB面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某厂生产某种零件,每个零件的成本为40元,出厂单价定为60元,该厂为鼓励销售商订购,决定当一次订购量超过100个时,每多订购一个,订购的全部零件的出厂单价就降低0.02元,但实际出厂单价不能低于51元.
(1)设一次订购量为个,零件的实际出厂单价为元,写出函数的表达式;
(2)当销售商一次订购500个零件时,该厂获得的利润是多少元?如果订购1000个,利润又是多少元?(工厂售出一个零件的利润=实际出厂单价-成本)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数(,)和函数(,,).问:(1)证明:在上是增函数;
(2)把函数和写成分段函数的形式,并画出它们的图象,总结出的图象是如何由的图象得到的.请利用上面你的结论说明:的图象关于对称;
(3)当,,时,若对于任意的恒成立,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校研究性学习小组对该校高三学生视力情况进行调查,在髙三的全体名学生中随机抽取了名学生的体检表,并得到如图的频率分布直方图.
(1)若直方图中后四组的频数成等差数列,试估计全年级视力在以下的人数;
(2)学习小组成员发现,学习成绩突出的学生,近视的比较多,为了研究学生的视力与学习成绩是否有关系,对年级名次在名和名的学生进行了调查,得到表中数据,根据表中的数据,能否有的把握认为视力与学习成绩有关系?
(3)在(2)中调查的名学生中,按照分层抽样在不近视的学生中抽取了人,进一步调查他们良好的护眼习惯,求在这人中任取人,恰好有人的年级名次在名的概率.
附:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数(,为实数,),.
(1)若,且函数的值域为,求得解析式;
(2)在(1)的条件下,当时,是单调函数,求实数的取值范围;
(3)设,,,且为偶函数,判断是否大于零,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以椭圆:的中心为圆心,为半径的圆称为该椭圆的“准圆”.设椭圆的左顶点为,左焦点为,上顶点为,且满足,.
(1)求椭圆及其“准圆”的方程;
(2)若椭圆的“准圆”的一条弦(不与坐标轴垂直)与椭圆交于、两点,试证明:当时,试问弦的长是否为定值,若是,求出该定值;若不是,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com