精英家教网 > 高中数学 > 题目详情
11.函数y=(2x-3)3的导数是(  )
A.3(2x-3)B.6xC.6(2x-3)D.6(2x-3)2

分析 根据导数的运算法则和复合函数的求导法则求导即可.

解答 解:y′=3(2x-3)2(2x-3)′=6(2x-3)2
故选:D.

点评 本题考查了导数的运算法则和复合函数的求导法则,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知向量$\overrightarrow{a}$=(sin2x,cos2x),$\overrightarrow{b}$=(2cos2$\frac{θ}{2}$-1,sinθ),且函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$在x=$\frac{2π}{3}$时取得最小值(其中0<θ<$\frac{π}{2}$)
(1)求θ的值;
(2)设α∈[$\frac{π}{2}$,π],β∈[0,$\frac{π}{2}$],f(α+$\frac{π}{6}$)=-$\frac{1}{3}$,f($\frac{β}{2}$-$\frac{7π}{12}$)=-$\frac{2\sqrt{2}}{3}$,求cos(α-β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知实数x,y满足$\left\{{\begin{array}{l}{x-y+5≥0}\\{x+y≥0}\\{x≤3}\end{array}}\right.$,则x-2y的最小值为-13,该不等式组所围成的区域的面积为30.25.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在△ABC中,内角A,B,C所对的边分别为a,b,c,若acosC+ccosA=bsinB,则△ABC的形状为直角三角形三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.实数m为何值时,复数z=(2+i)m2-3(i+1)m-2(1-i)分别是:
(Ⅰ)实数;
(Ⅱ)虚数;
(Ⅲ)纯虚数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知定义在R上的函数f(x),对任意x,y∈R都有f(x+y)=f(x)+f(y),且f(x)是R上的增函数.
(I)求证:函数f(x)是R上的奇函数;
(II)若不等式f(k•2x)+f(2x-4x-2)<0对任意x∈R恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在△ABC中,已知a2=b2+bc+c2,则角A为(  )
A.$\frac{π}{3}$B.$\frac{π}{6}$C.$\frac{2π}{3}$D.$\frac{π}{3}$或$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若(2x+1)(x-2)5=a0+a1x+…+a6x6,则a0+a1=-16.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}{x=1+\sqrt{2}cosα}\\{y=1+\sqrt{2}sinα}\end{array}\right.$(α为参数),以O为极点,x轴正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρ(cosθ+sinθ)+1=0,求:
(Ⅰ)曲线C1的一般方程和C2的直角坐标方程;
(Ⅱ)曲线C1上的点到曲线C2的最远距离.

查看答案和解析>>

同步练习册答案