精英家教网 > 高中数学 > 题目详情

【题目】某工厂有甲,乙两个车间生产同一种产品,甲车间有工人人,乙车间有工人人,为比较两个车间工人的生产效率,采用分层抽样的方法抽取工人,甲车间抽取的工人记作第一组,乙车间抽取的工人记作第二组,并对他们中每位工人生产完成的一件产品的事件(单位:)进行统计,按照进行分组,得到下列统计图.

分别估算两个车间工人中,生产一件产品时间少于的人数;

分别估计两个车间工人生产一件产品时间的平均值,并推测车哪个车间工人的生产效率更高?

从第一组生产时间少于的工人中随机抽取人,求抽取人中,至少人生产时间少于的概率.

【答案】甲车间:人;乙车间:人;甲车间平均值:;乙车间平均值:;乙车间工人生产效率更高;

【解析】

分别计算出在生产完成一件产品的频率,然后估算总体的频数;利用频数分布图和频率分布直方图分别估计平均值,由于乙车间平均值较小,可得乙车间生产效率高;可确定工人共有人,其中少于的共有人,列举出所有基本事件,根据古典概型求得结果.

第一组工人人,其中在内(不含)生产完成一件产品的有

甲车间工人中生产一件产品时间少于的人数为(人)

第二组工人人. 其中在内(不含)生产完成一件产品的有

乙车间工人中生产一件产品时间少于的人数为(人)

第一组平均时间为

第二组平均时间为

乙车间工人生产效率更高;

由题意得,第一组生产时间少于的工人有人,其中生产时间少于的有人分别用代表,生产时间不少于的工人用代表

抽取人基本事件空间为 ,共个基本事件.

设事件人中至少人生产时间少于

则事件个基本事件

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若关于的不等式的解集为,求实数的值;

2)设,若不等式都成立,求实数的取值范围;

3)若时,求函数的零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法中错误的是( )

A. 先把高二年级的名学生编号为,再从编号为名学生中随机抽取名学生,其编号为,然后抽取编号为的学生,这样的抽样方法是系统抽样法.

B. 正态分布在区间上取值的概率相等

C. 若两个随机变量的线性相关性越强,则相关系数的值越接近于

D. 若一组数据的平均数是,则这组数据的众数和中位数都是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点P(2,2),,过点P的动直线l与圆C交于A,B两点,线段AB的中点为M,O为坐标原点.

(1)求点M的轨迹方程;

(2)|OP|=|OM|,l的方程及△POM的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的倾斜角为,且经过点.以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,直线,从原点O作射线交于点M,点N为射线OM上的点,满足,记点N的轨迹为曲线C.

(Ⅰ)求出直线的参数方程和曲线C的直角坐标方程;

(Ⅱ)设直线与曲线C交于P,Q两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,若椭圆上的点与两个焦点构成的三角形中,面积最大为1.

1)求椭圆的标准方程;

2)设直线与椭圆的交于两点,为坐标原点,且,证明:直线与圆相切.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为整数,若对任意的,不等式恒成立,则的最大值是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在棱长为2的正方体中,点是正方体棱上一点,.

①若,则满足条件的点的个数为______

②若满足的点的个数为6,则的取值范围是______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆E的方程为y21,其左焦点和右焦点分别为F1F2P是椭圆E上位于第一象限的一点

1)若三角形PF1F2的面积为,求点P的坐标;

2)设A10),记线段PA的长度为d,求d的最小值.

查看答案和解析>>

同步练习册答案