【题目】如图,四棱锥中,,,,为正三角形,且.
(1)证明:直线平面;
(2)若四棱锥的体积为,是线段的中点,求直线与平面所成角的正弦值.
【答案】(1)证明见解析;(2).
【解析】
(1)证明,,推出平面;
(2)以为原点,直线、分别为轴,轴,建立空间直角坐标系,求出各点的坐标,由(1)的结论知,平面,所以则向量与向量所成的角或其补角与直线与平面所成的角互余,计算结果即可.
(1),且,,
又为正三角形,所以,
又,,所以,又,//,
,,所以平面.
(2)设点到平面的距离为,则,依题可得,以为原点,直线、分别为轴,轴,建立空间直角坐标系,分别求出各点的坐标和向量,由(1)可知平面,故向量是平面的一个法向量,则向量与向量所成的角或其补角与直线与平面所成的角互余.
则,,,,则,设,
由,,可得,解得,,
即,
所以,又由(1)可知,是平面的一个法向量,
∴,
所以直线与平面所成角的正弦值为.
科目:高中数学 来源: 题型:
【题目】在四棱锥P﹣ABCD 中,△PAD 为等边三角形,底面ABCD为等腰梯形,满足AB∥CD,AD=DCAB=2,且平面PAD⊥平面ABCD.
(1)证明:BD⊥平面PAD
(2)求点C到平面PBD的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|x﹣1|,关于x的不等式f(x)<3﹣|2x+1|的解集记为A.
(1)求A;
(2)已知a,b∈A,求证:f(ab)>f(a)﹣f(b).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直三棱柱ABC-A1B1C1中,已知AB⊥AC,AB=2,AC=4,AA1=3,D是BC的中点.
(1) 求直线DC1与平面A1B1D所成角的正弦值;
(2) 求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂每日生产某种产品吨,当日生产的产品当日销售完毕,当时,每日的销售额(单位:万元)与当日的产量满足,当日产量超过20吨时,销售额只能保持日产量20吨时的状况.已知日产量为2吨时销售额为4.5万元,日产量为4吨时销售额为8万元.
(1)把每日销售额表示为日产量的函数;
(2)若每日的生产成本(单位:万元),当日产量为多少吨时,每日的利润可以达到最大?并求出最大值.
(注:计算时取,)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列的首项,且,.
(1)证明:是等比数列;
(2)若,中是否存在连续三项成等差数列?若存在,写出这三项,若不存在,请说明理由;
(3)若是递减数列,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.
有时可用函数
描述学习某学科知识的掌握程度,其中x表示某学科知识的学习次数(),表示对该学科知识的掌握程度,正实数a与学科知识有关.
(1) 证明:当时,掌握程度的增加量总是下降;
(2) 根据经验,学科甲、乙、丙对应的a的取值区间分别为,,
.当学习某学科知识6次时,掌握程度是85%,请确定相应的学科.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】秉承提升学生核心素养的理念,学校开设以提升学生跨文化素养为核心的多元文化融合课程.选某艺术课程的学生唱歌、跳舞至少会一项,已知会唱歌的有人,会跳舞的有人,现从中选人,设为选出的人中既会唱歌又会跳舞的人数,且
(1)求选该艺术课程的学生人数;
(2)写出的概率分布列并计算.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,分别过椭圆左、右焦点的动直线相交于点,与椭圆分别交于与不同四点,直线的斜率满足, 已知与轴重合时, .
(1)求椭圆的方程;
(2)是否存在定点使得为定值,若存在,求出点坐标并求出此定值,若不存在,
说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com