【题目】已知椭圆(),四点, , , 中恰有三点在椭圆上.
(1)求的方程;
(2)设直线不经过点且与相交于两点,若直线与直线的斜率之和为,证明: 过定点.
【答案】(1);(2)见解析.
【解析】试题分析:(1)根据椭圆的对称性,得到, , , 三点在椭圆C上.把点坐标代入椭圆C,求出a2=4,b2=1,由此能求出椭圆C的方程.
(2)设直线l: ,,不设直线P2A与直线P2B的斜率分别为k1,k2, 联立直线P2A与椭圆方程得 代入直线l方程: 中得,同理,所以易知k1,k2 ,是方程 两根,由韦达定理,即可得解.
试题解析:
(1)由于p3,p4两点关于y轴对称,故由题设知C经过p3,p4两点,又由知,C不经过点 ,所以点在C上
因此 ,解得
故C的方程为
(2)由题设易知,直线l与x轴不平行,故可设方程为:,
设直线P2A与直线P2B的斜率分别为k1,k2 ,
联立直线P2A与椭圆方程
即代入直线方程得.
即代入直线l方程: 中,
化简得:
同理:
易知k1,k2 ,是方程 两根
故k1+k2 =
m=t+2
即直线l为:
即l过定点(2,-1).
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系中,以为极点, 轴正半轴为极轴建立极坐标系,直线的极坐标方程为(),为上一点,以为边作等边三角形,且、、三点按逆时针方向排列.
(Ⅰ)当点在上运动时,求点运动轨迹的直角坐标方程;
(Ⅱ)若曲线: ,经过伸缩变换得到曲线,试判断点的轨迹与曲线是否有交点,如果有,请求出交点的直角坐标,没有则说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左,右焦点为,左,右顶点为,过点的
直线分别交椭圆于点.
(1)设动点,满足,求点的轨迹方程;
(2)当时,求点的坐标;
(3)设,求证:直线过轴上的定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图在四面体ABCD中,若截面PQMN是正方形,则在下列命题中正确的有 .(填上所有正确命题的序号)
①AC⊥BD
②AC=BD
③AC∥截面PQMN
④异面直线PM与BD所成的角为45°.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某手机卖场对市民进行国产手机认可度的调查,随机抽取名市民,按年龄(单位:岁)进行统计和频数分布表和频率分布直线图如下:
分组(岁) | 频数 |
合计 |
(1)求频率分布表中、的值,并补全频率分布直方图;
(2)在抽取的这名市民中,按年龄进行分层抽样,抽取人参加国产手机用户体验问卷调查,现从这人中随机选取人各赠送精美礼品一份,设这名市民中年龄在内的人数,求的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P—ABCD中,底面ABCD是直角梯形,∠DAB=90°,AD//BC,且BC⊥PB,△PAB是等边三角形,DA=AB=2,BC=AD,E是线段AB的中点.
(I)求证:PE⊥CD;
(II)求PC与平面PDE所成角的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com