19£®ÒÑÖªÍÖÔ²$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊe=$\frac{\sqrt{3}}{3}$£¬MNÊǾ­¹ýÍÖÔ²×ó½¹µãFµÄÈÎÒ»ÏÒ£¬ABÊǾ­¹ýÍÖÔ²ÖÐÐÄOÇÒƽÐÐÓÚMNµÄÏÒ£®
£¨¢ñ£©Èô$2\overrightarrow{MF}=5\overrightarrow{FN}$£¬ÇóÏÒMNËùÔÚÖ±ÏßµÄбÂÊ£»
£¨¢ò£©Ö¤Ã÷£º|AB|ÊÇ|MN|ºÍÍÖÔ²³¤Öá2aµÄµÈ±ÈÖÐÏ

·ÖÎö £¨I£©e=$\frac{\sqrt{3}}{3}$=$\frac{c}{a}$£¬Éèa=3m£¬Ôòc=$\sqrt{3}$m£¬b2=a2-c2=6m2£®¿ÉµÃÍÖÔ²µÄ±ê×¼·½³ÌΪ£º2x2+3y2=18m2£®ÉèÖ±ÏßlµÄ·½³ÌΪ£ºty-$\sqrt{3}$m=x£¬M£¨x1£¬y1£©£¬N£¨x2£¬y2£©£®ÓëÍÖÔ²·½³ÌÁªÁ¢»¯Îª£¨2t2+3£©y2-4$\sqrt{3}$tmy-12m2=0£¬ÓÉ$2\overrightarrow{MF}=5\overrightarrow{FN}$£¬¿ÉµÃ-2y1=5y2£¬Óë¸ùÓëϵÊýµÄ¹ØϵÁªÁ¢¼´¿É½â³ö£®
£¨II£©Ö±ÏßABµÄ·½³ÌΪ£ºty=x£¬ÓëÍÖÔ²·½³ÌÁªÁ¢½âµÃy2£¬x2£¬¿ÉµÃ|AB|2=4£¨x2+y2£©£®ÀûÓÃÏÒ³¤¹«Ê½¿ÉµÃ|MN|=$\sqrt{£¨1+{t}^{2}£©[£¨{y}_{1}+{y}_{2}£©^{2}-4{y}_{1}{y}_{2}]}$£¬¼´¿ÉÖ¤Ã÷£®

½â´ð £¨I£©½â£º¡ße=$\frac{\sqrt{3}}{3}$=$\frac{c}{a}$£¬Éèa=3m£¬Ôòc=$\sqrt{3}$m£¬b2=a2-c2=6m2£®
¡àÍÖÔ²µÄ±ê×¼·½³ÌΪ£º$\frac{{x}^{2}}{9{m}^{2}}+\frac{{y}^{2}}{6{m}^{2}}$=1£¬¼´2x2+3y2=18m2£®
ÉèÖ±ÏßlµÄ·½³ÌΪ£ºty-$\sqrt{3}$m=x£¬M£¨x1£¬y1£©£¬N£¨x2£¬y2£©£®
ÁªÁ¢$\left\{\begin{array}{l}{ty-\sqrt{3}m=x}\\{2{x}^{2}+3{y}^{2}=18{m}^{2}}\end{array}\right.$£¬»¯Îª£¨2t2+3£©y2-4$\sqrt{3}$tmy-12m2=0£¬
¡ày1+y2=$\frac{4\sqrt{3}tm}{2{t}^{2}+3}$£¬y1y2=$\frac{-12{m}^{2}}{2{t}^{2}+3}$£¬
¡ß$2\overrightarrow{MF}=5\overrightarrow{FN}$£¬
¡à-2y1=5y2£¬
½âµÃy2=$\frac{-8\sqrt{3}tm}{3£¨2{t}^{2}+3£©}$£¬y1=$\frac{20\sqrt{3}tm}{3£¨2{t}^{2}+3£©}$£¬
¡à$\frac{-160¡Á3{t}^{2}{m}^{2}}{9£¨2{t}^{2}+3£©^{2}}$=$\frac{-12{m}^{2}}{2{t}^{2}+3}$£¬
»¯Îª£ºt2=$\frac{27}{22}$£¬½âµÃt=¡À$\frac{3\sqrt{66}}{22}$£®
£¨II£©Ö¤Ã÷£ºÖ±ÏßABµÄ·½³ÌΪ£ºty=x£¬
ÁªÁ¢$\left\{\begin{array}{l}{ty=x}\\{2{x}^{2}+3{y}^{2}=18{m}^{2}}\end{array}\right.$£¬½âµÃy2=$\frac{18{m}^{2}}{2{t}^{2}+3}$£¬x2=$\frac{18{t}^{2}{m}^{2}}{2{t}^{2}+3}$£¬
¡à|AB|2=4£¨x2+y2£©=$\frac{72{m}^{2}£¨1+{t}^{2}£©}{2{t}^{2}+3}$£®
|MN|=$\sqrt{£¨1+{t}^{2}£©[£¨{y}_{1}+{y}_{2}£©^{2}-4{y}_{1}{y}_{2}]}$=$\sqrt{£¨1+{t}^{2}£©[\frac{48{t}^{2}{m}^{2}}{£¨2{t}^{2}+3£©^{2}}-\frac{-48{m}^{2}}{2{t}^{2}+3}]}$=$\frac{12m£¨1+{t}^{2}£©}{2{t}^{2}+3}$£¬
¡à|MN|•2a=$\frac{12m£¨1+{t}^{2}£©}{2{t}^{2}+3}$¡Á2¡Á3m=$\frac{72{m}^{2}£¨1+{t}^{2}£©}{2{t}^{2}+3}$£¬
¡à|MN|•2a=|AB|2£®
¡à|AB|ÊÇ|MN|ºÍÍÖÔ²³¤Öá2aµÄµÈ±ÈÖÐÏ

µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²µÄ±ê×¼·½³Ì¼°ÆäÐÔÖÊ¡¢Ö±ÏßÓëÍÖÔ²ÏཻÏÒ³¤ÎÊÌâ¡¢ÏòÁ¿¹²Ï߶¨Àí×ø±êÔËËã¡¢µÈ±ÈÖÐÏÒ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÒÑÖª¼¯ºÏA={x|x2-5x-6¡Ü0}£¬B={x|x-3a£¼0}£¬
£¨¢ñ£©µ±$a=\frac{1}{3}$ʱ£¬ÇóA¡ÉB£»
£¨¢ò£©ÈôA¡ÈB=B£¬ÇóʵÊýaµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÅжÏÏÂÁк¯ÊýµÄÆæżÐÔ£º
£¨1£©f£¨x£©=$\sqrt{2}$sin£¨2x+$\frac{5}{2}$¦Ð£©£»
£¨2£©f£¨x£©=$\sqrt{2sinx-1}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®Èý½ÇÐÎABCÖУ®Èôsin£¨A+B-C£©=sin£¨A-B+C£©£¬ÔòÕâ¸öÈý½ÇÐεÄÐÎ״ΪµÈÑüÈý½ÇÐλòÖ±½ÇÈý½ÇÐΣ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$£¨a£¾b£¾0£©µÄÉ϶¥µãΪP£¬×óÓÒ½¹µãΪF1£¬F2£¬×óÓÒ¶¥µãΪD£¬E£¬¹ýÔ­µãO²»´¹Ö±xÖáµÄÖ±ÏßÓëÍÖÔ²C½»ÓÚA£¬BÁ½µã£®

£¨¢ñ£©ÈôÍÖÔ²µÄÀëÐÄÂÊΪ$\frac{1}{2}$£¬F2£¨1£¬0£©£¬
¢ÙÇóÍÖÔ²µÄ·½³Ì£»
¢ÚÁ¬½ÓAE£¬BEÓëÓÒ×¼Ïß½»ÓÚµãN£¬M£¬ÔòÔÚxÖáÉÏÊÇ·ñ´æÔÚ¶¨µãT£¬Ê¹TM¡ÍTN£¬Èô´æÔÚ£¬Çó³öµãTµÄ×ø±ê£¬Èô²»´æÔÚ˵Ã÷ÀíÓÉ£®
£¨¢ò£©ÈôÖ±ÏßPF1¡ÎAB£¬ÇÒPF1ÓëÍÖÔ²½»ÓÚµãQ£¬$\frac{AB}{PQ}=\frac{\sqrt{5}}{2}$£¬ÇóÍÖÔ²ÀëÐÄÂÊ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®ÒÑÖª¶¨µãA£¨3£¬1£©£¬PÊÇÍÖÔ²$\frac{{x}^{2}}{25}+\frac{{y}^{2}}{9}=1$ÉϵÄÈÎÒ»µã£¬F1£¬F2·Ö±ðÊÇÍÖÔ²µÄ×óÓÒ½¹µã£¬Ôò|PF2|+|PA|µÄ×îСֵΪ10-5$\sqrt{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®ÍÖÔ²ÉϵĵãA£¨-3£¬0£©¹ØÓÚÖ±Ïßy=xºÍy=-xµÄ¶Ô³Æµã·Ö±ðΪÍÖÔ²µÄ½¹µãF1ºÍF2£¬PΪÍÖÔ²ÉÏÈÎÒâÒ»µã£¬Ôò|$\overrightarrow{P{F}_{1}}$|•|$\overrightarrow{P{F}_{2}}$|µÄ×î´óֵΪ18£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®£¨1£©ÒÑÖªcos¦Á=$\frac{1}{3}$£¬ÇÒ-$\frac{¦Ð}{2}$£¼¦Á£¼0£¬Çó$\frac{sin£¨2¦Ð+a£©}{tan£¨-a-¦Ð£©cos£¨-a£©tan£¨¦Ð+a£©}$µÄÖµ
£¨2£©ÒÑÖªsin¦È=-$\frac{4}{5}$£¬ÇÒtan¦È£¾0£¬Çócos¦È•sin¦ÈµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÉèÊýÁÐ{an}µÄÇ°nÏîºÍΪSn£¬ÒÑÖª2Sn=3n+3£®Çó{an}µÄͨÏʽ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸