精英家教网 > 高中数学 > 题目详情
11.下列命题中,正确命题的个数是(  )
①若a>b,c>d,则ac>bd;
②若ac2>bc2,则a>b;
③若a>b,c>d,则a-c>b-d;
④若a>0,b>0,则$\frac{1}{a}$+$\frac{1}{b}$≥$\frac{2}{\sqrt{ab}}$;
⑤y=sinx+$\frac{2}{sinx}$,x∈(0,$\frac{π}{2}$]的最小值是2$\sqrt{2}$.
A.1B.2C.3D.4

分析 根据不等式的基本性质和基本不等式分别判断5个命题的真假,可得答案.

解答 解:①若a>0>b,0>c>d,则ac<bd,故①错误;
②若ac2>bc2,则c2>0,则a>b,故②正确;
③若a>b,c=a+1>d=b+1,则a-c=b-d,故③错误;
④若a>0,b>0,$\frac{1}{a}$>0,$\frac{1}{b}$>0,则$\frac{1}{a}$+$\frac{1}{b}$≥$\frac{2}{\sqrt{ab}}$,故④正确;
⑤若x∈(0,$\frac{π}{2}$],sinx∈(0,1],当sinx=1时,y=sinx+$\frac{2}{sinx}$取最小值3,故⑤错误.
故正确的命题个数为2个,
故选:B

点评 本题考查的知识点是命题的真假判断与应用,不等式的基本性质和基本不等式,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.某小组有3名男生和2名女生,从中任选2名学生参加演讲比赛,那么互斥而不对立的两个事件是(  )
A.至少有1名男生和至少有1名女生B.恰有1名男生和恰有2名男生
C.至少有1名男生和都是女生D.至多有1名男生和都是女生

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知△ABC中,a=3,b=4,c=5,则$\frac{a+b+c}{sinA+sinB+sinC}$=(  )
A.5B.7C.9D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.“m=1”是“直线mx+y-2=0与直线x+my+1-m=0平行”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若圆柱与圆锥的底面半径相等,母线也相等,它们的侧面积分别为S1和S2,则S1:S2=(  )
A.1:2B.2:1C.1:3D.3:1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.(1)化简求值:$\frac{{sin(π-α)cos(π+α)cos(\frac{3π}{2}+α)}}{cos(3π-α)sin(3π+α)}$;
(2)设sinα=-$\frac{{2\sqrt{5}}}{5}$,tanβ=$\frac{1}{3}$,-$\frac{π}{2}$<α<0,0<β<$\frac{π}{2}$,求α+β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知△ABC是边长为1的等边三角形,点D,E分别是边AB,BC的中点,连接DE并延长到点F,使得DE=4EF,则$\overrightarrow{AF}•\overrightarrow{BC}$的值为(  )
A.$\frac{1}{16}$B.$\frac{1}{8}$C.$\frac{1}{4}$D.$\frac{1}{32}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知数列{an}的前n项和为Sn,且Sn=n-5an-85,n∈N+
(1)求an
(2)求数列{Sn}的通项公式,并求出n为何值时,Sn取得最小值?并说明理由.(参考数据:lg 2≈0.3,lg 3≈0.48).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知点F1(-1,0),F2(1,0),动点M到点F2的距离是2$\sqrt{2}$,线段MF1的中垂线交线段MF2于点P
(1)当点M变化时,求动点P的轨迹G的方程;
(2)直线l与曲线G相切于点N,过F2作NF2的垂线与直线l相交于点Q,求证:点Q落在一条定直线m上,并求直线m的方程.

查看答案和解析>>

同步练习册答案