精英家教网 > 高中数学 > 题目详情
若圆C1:x2+y2-2mx+m2=4与圆C2:x2+y2+2x-4my=8-4m2相交,则实数m的取值范围是(  )
A、(-
12
5
,-
2
5
)
B、(-
12
5
2
5
)
C、(-
12
5
2
5
)
∪(0,2)
D、(-
12
5
,-
2
5
)
∪(0,2)
分析:把两圆化为标准方程,分别找出圆心坐标和半径,利用两点间的距离公式表示出两圆心之间的距离,根据两圆的位置关系是相交得到圆心之间的距离大于两半径相减,小于两半径相加,列出关于m的不等式,求出不等式的解集即可得到m的取值范围.
解答:解:把圆C1:x2+y2-2mx+m2=4与圆C2:x2+y2+2x-4my=8-4m2化为标准方程得:
圆C1:(x-m)2+y2=4,圆C2:(x+1)2+(y-2m)2=9,
则圆C1的圆心坐标为(m,0),半径r=2;圆C2:的圆心坐标为(-1,2m),半径R=3,
由两圆的位置关系是相交,得到两圆心之间的距离d的范围为:1<d<5,
即1<
(m+1)2+(0-2m)2
<5,
可化为:
5m2+2m>0①
5m2+2m-24<0②

由①解得:m>0或m<-
2
5
;由②解得:-
12
5
<m<2,
则原不等式的解集为:-
12
5
<m<-
2
5
或0<m<2.
所以实数m的取值范围是:(-
12
5
,-
2
5
)∪(0,2).
故选D
点评:此题考查学生掌握两圆的位置关系的判断方法,灵活运用两点间的距离公式化简求值,是一道基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若圆C1x2+y2=1和圆C2:(x+4)2+(y-a)2=25外切,则a的值为
±2
5
±2
5

查看答案和解析>>

科目:高中数学 来源: 题型:

若圆C1x2+y2=1与圆C2:(x-a)2+y2=1有3条公切线,则a=
±2
±2

查看答案和解析>>

科目:高中数学 来源: 题型:

若圆C1:x2+y2-2mx+m2=4和C2:x2+y2+2x-4my=8-4m2相交,则m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•包头一模)若圆C1:x2+y2+2ax+a2-4=0,(a∈R)与圆C2:x2+y2-2by-1+b2=0,(b∈R)外切,则a+b的最大值为(  )

查看答案和解析>>

同步练习册答案