精英家教网 > 高中数学 > 题目详情
16.a1=2,an+1=an+ln(1+$\frac{1}{n}$),an=2+lnn.

分析 把递推式整理,先整理对数的真数,通分变成 $\frac{n+1}{n}$,用迭代法整理出结果,约分得答案.

解答 解:∵${a}_{2}={a}_{1}+ln(1+\frac{1}{1})$=${a}_{1}+ln(\frac{2}{1})$,
${a}_{3}={a}_{2}+ln(1+\frac{1}{2})$=${a}_{1}+ln(\frac{2}{1})+ln(\frac{3}{2})$,

∴${a}_{n}={a}_{n-1}+ln(1+\frac{1}{n-1})$=${a}_{1}+ln(\frac{2}{1})(\frac{3}{2})(\frac{4}{3})…(\frac{n}{n-1})=2+lnn$.
故答案为:2+lnn.

点评 本题考查数列递推式,训练了利用迭代法求解数列的通项公式,考查了对数的运算性质,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=2x+3.数列{an}满足a1=1,且an+1=f(an)(n∈N*),则该数列的通项公式为an=2n+1-3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上任一点,F1,F2为椭圆的左、右焦点,求|PF1|的 最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知定义在R上的偶函数f(x)在(0,+∞)上为增函数,且f($\frac{1}{3}$)=0,求使不等式f(x+1)>0成立的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.(1)若f(x)=cos2(2x+$\frac{π}{6}$),则f′(x)=-2sin(4x+$\frac{π}{3}$);
(2)若f(x)=ln$\sqrt{\frac{1-x}{1+x}}$,则f′(x)=$\frac{1}{{x}^{2}-1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.己知点O为坐标原点,△ABC为圆C1:(x-1)2+(y-$\sqrt{3}$)2=1的内接正三角形,则$\overrightarrow{OA}$•($\overrightarrow{OB}$$+\overrightarrow{OC}$)的最小值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在平面直角坐标系中,直线x-2y+1=0被圆(x-2)2+(y+1)2=9截得的弦长为4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若|sinα|=sin(-π+α),则α的取值范围是{α|-π+2kπ≤α≤2kπ,k∈Z}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在△ABC中,AB⊥AC,则BC边的平方等于另外两边平方和.即AB2+AC2=BC2,类比得到空间中相应结论为在四面体P-ABC中,平面PAB、平面PBC、平面PCA两两垂直,则△ABC面积的平方等于三个直角三角形面积的平方和.即$S_{△ABC}^2=S_{△PAB}^2+S_{△PBC}^2+S_{△PCA}^2$.

查看答案和解析>>

同步练习册答案