精英家教网 > 高中数学 > 题目详情

【题目】(Ⅰ)求证:当a>2时, + <2 ; (Ⅱ)证明:2, ,5不可能是同一个等差数列中的三项.

【答案】解:(Ⅰ)∵( + 2=2a+2 >0, >0且a+2≠a﹣2, ∴
+ <2
(Ⅱ)假设 是同一个等差数列中的三项,分别设为am , an , ap
为无理数,又 为有理数,矛盾.
所以,假设不成立,即 不可能是同一个等差数列中的三项.
【解析】(Ⅰ)利用综合法证明即可;(Ⅱ)利用反证法证明,假设 是同一个等差数列中的三项,分别设为am , an , ap , 推出 为无理数,又 为有理数,矛盾,即可证明不可能是等差数列中的三项.
【考点精析】掌握反证法与放缩法是解答本题的根本,需要知道常见不等式的放缩方法:①舍去或加上一些项②将分子或分母放大(缩小).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】2014年7月16日,中国互联网络信息中心发布《第三十四次中国互联网发展状况报告》,报告显示:我国网络购物用户已达亿.为了了解网购者一次性购物金额情况,某统计部门随机抽查了6月1日这一天100名网购者的网购情况,得到如下数据统计表.已知网购金额在2000元以上(不含2000元)的频率为

(Ⅰ)确定 的值;

(Ⅱ)为进一步了解网购金额的多少是否与网龄有关,对这100名网购者调查显示:购物金额在2000元以上的网购者中网龄3年以上的有35人,购物金额在2000元以下(含2000元)的网购者中网龄不足3年的有20人.

①请将列联表补充完整;

网龄3年以上

网龄不足3年

合计

购物金额在2000元以上

35

购物金额在2000元以下

20

合计

100

②并据此列联表判断,是否有%的把握认为网购金额超过2000元与网龄在三年以上有关?

参考数据:

(参考公式: ,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将一颗质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次,记第一次出现的点数为x,第二次出现的点数为y.
(1)求事件“x+y≤3”的概率;
(2)求事件“|x﹣y|=2”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函.

(1)当时,求在区间上的最大值和最小值;

(2)若在区间上, 函数的图象恒在直线下方, 的取值范围;

(3)设.当时, 对于任意,存在,使,实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两人投篮命中的概率为别为 ,各自相互独立,现两人做投篮游戏,共比赛3局,每局每人各投一球.
(1)求比赛结束后甲的进球数比乙的进球数多1个的概率;
(2)设ξ表示比赛结束后,甲、乙两人进球数的差的绝对值,求ξ的概率分布和数学期望E(ξ).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆),原点到直线的距离为,其中:点,点.

1)求该椭圆的离心率

2)经过椭圆右焦点的直线和该椭圆交于两点,点在椭圆上, 为原点,若,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图几何体中,边长为正方形,直角梯形,

(1)异面直线所成角的大小

(2)求几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 的夹角为120°,且| |=4,| |=2.求:
(1)( ﹣2 )( + );
(2)|3 ﹣4 |.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某仓库为了保持库内的湿度和温度,四周墙上均装有如图所示的自动通风设施.该设施的下部ABCD是矩形,其中AB=2米,BC=0.5米.上部CmD是个半圆,固定点E为CD的中点.△EMN是由电脑控制其形状变化的三角通风窗(阴影部分均不通风),MN是可以沿设施边框上下滑动且始终保持和AB平行的伸缩横杆(MN和AB、DC不重合).
(1)当MN和AB之间的距离为1米时,求此时三角通风窗EMN的通风面积;
(2)设MN与AB之间的距离为x米,试将三角通风窗EMN的通风面积S(平方米)表示成关于x的函数S=f(x);
(3)当MN与AB之间的距离为多少米时,三角通风窗EMN的通风面积最大?并求出这个最大面积.

查看答案和解析>>

同步练习册答案