精英家教网 > 高中数学 > 题目详情
3.已知全集U={1,2,3,…,10},A={1,2,3,4,5},B={4,5,6,7,8},C={3,5,7,9},求 A∪B,A∩B,(CUA)∩B,A∪( B∩C).

分析 根据集合的运算法则与性质,计算所求的交集、并集与补集即可.

解答 解:∵全集U={1,2,3,…,10},
A={1,2,3,4,5},B={4,5,6,7,8},C={3,5,7,9},
∴A∪B={1,2,3,4,5,6,7,8},
A∩B={4,5};
又∁UA={6,7,8,9,10},
∴(CUA)∩B={6,7,8};
又B∩C={5,7},
∴A∪( B∩C)={1,2,3,4,5,7}.

点评 本题考查了集合的化简与运算问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知正△ABC内一点D,满足∠ADC=150°.证明:由线段AD、BD、CD为边构成的三角形是直角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=(2$\sqrt{3}$cosωx+sinωx)sinωx-sin2($\frac{π}{2}$+ωx)(ω>0),且函数y=f(x)的图象的一个对称中心到最近的对称轴的距离为$\frac{π}{4}$.
(Ⅰ)求ω的值和函数f(x)的单调递增区间;
(Ⅱ) 求函数f(x)在区间$[{0,\frac{π}{2}}]$上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)是定义在(0,+∞)上的增函数,且对任意的x,y∈(0,+∞),都有f(x+y)=f(x)+f(y)-1,已知f(4)=5.
(Ⅰ)求f(2)的值;
(Ⅱ)解不等式f(m-2)≤2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设x,y是正实数,记S为x,$y+\frac{1}{x}$,$\frac{1}{y}$中的最小值,则S的最大值为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知P(x,y)是双曲线$\frac{{x}^{2}}{4}-{y}^{2}$=1上任意一点,F1是双曲线的左焦点,O是坐标原点,则$\overrightarrow{PO}•\overrightarrow{P{F}_{1}}$的最小值是4-2$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.集合A={3,2a},B={a,b},若A∩B={2},则a+b=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知二次函数f(x)=ax2+bx+c(a,b,c∈R)
(1)若b=2a,a<0写出函数f(x)的单调递减区间;
(2)若a=1,c=2,若存在实数b使得函数f(x)在区间(0,2)内有两个不同的零点,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若y=lnx,则其图象在x=2处的切线斜率是(  )
A.1B.$\frac{1}{2}$C.2D.0

查看答案和解析>>

同步练习册答案