已知圆C:(x-4)2+(y-m)2=16(m∈N*),直线4x-3y-16=0过椭圆E:+=1(a>b>0)的右焦点,且被圆C所截得的弦长为,点A(3,1)在椭圆E上.
(1)求m的值及椭圆E的方程;
(2)设Q为椭圆E上的一个动点,求·的取值范围.
科目:高中数学 来源: 题型:解答题
已知椭圆 的离心率为 ,且过点
(Ⅰ)求椭圆的标准方程;
(Ⅱ)四边形ABCD的顶点在椭圆上,且对角线AC、BD过原点O,若 .
(i)求 的最值:
(i i)求证:四边形ABCD的面积为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知定点A(1,0),B (2,0) .动点M满足,
(1)求点M的轨迹C;
(2)若过点B的直线l(斜率不等于零)与(1)中的轨迹C交于不同的两点E、F
(E在B、F之间),试求△OBE与△OBF面积之比的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知点,直线,动点P到点F的距离与到直线的距离相等.
(1)求动点P的轨迹C的方程;
(2)直线与曲线C交于A,B两点,若曲线C上存在点D使得四边形FABD为平行四边形,求b的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知直线l与抛物线相切于点P(2,1),且与轴交于点A,定点B的坐标为(2,0) .
(1)若动点M满足,求点M的轨迹C;
(2)若过点B的直线l(斜率不等于零)与(I)中的轨迹C交于不同的两点E、F(E在B、F之间),试求△OBE与△OBF面积之比的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线C:y2=2px(p>0)过点A(1,-2).
(1)求抛物线C的方程,并求其准线方程;
(2)是否存在平行于OA(O为坐标原点)的直线l,使得直线l与抛物线C有公共点,且直线OA与l的距离等于?若存在,求出直线l的方程;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线C:的焦点为F,直线y=4与y轴的交点为P,与C的交点为Q,且.
(1)求抛物线C的方程;
(2)过F的直线l与C相交于A,B两点,若AB的垂直平分线与C相交于M,N两点,且A,M,B,N四点在同一个圆上,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系中,已知椭圆的焦点在轴上,离心率为,且经过点.
(1)求椭圆的标准方程;
(2) 以椭圆的长轴为直径作圆,设为圆上不在坐标轴上的任意一点,为轴上一点,过圆心作直线的垂线交椭圆右准线于点.问:直线能否与圆总相切,如果能,求出点的坐标;如果不能,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com