精英家教网 > 高中数学 > 题目详情
提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度(单位:辆/千米)的函数.当桥上的的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当时,车流速度是车流密度x的一次函数.
(Ⅰ)当时,求函数的表达式;
(Ⅱ)当车流密度为多大时,车流量(单位时间内通过桥上某观察点的车辆数,单位:辆/每小时)可以达到最大,并求出最大值(精确到1辆/小时).
(Ⅰ);(Ⅱ)当车流密度为100辆/千米时,车流量可以达到最大,最大值约为3333辆/小时.

试题分析:(1)分析可知当时,车流速度为常数所以此时。当为一次函数,则可设其方程为。再根据已知列出方程组求.(2)现根据的解析式求出的解析式,所以也是分段函数,需分情况讨论当,此时上是增函数,所以最大,当利用基本不等式(或配方法)求最值。最后比较这两个最大值的大小取其中最大的一个
试题解析:(1)由题意:当;当
再由已知得
故函数的表达式为
(2)依题意并由(1)可得
为增函数,故当时,其最大值为60×20=1200;
时,
当且仅当,即时,等号成立。
所以,当在区间[20,200]上取得最大值.
综上,当时,在区间[0,200]上取得最大值
即当车流密度为100辆/千米时,车流量可以达到最大,最大值约为3333辆/小时.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

我国是水资源较贫乏的国家之一,各地采用价格调控等手段来达到节约用水的目的,某市每户每月用水收费办法是:水费=基本费+超额费+定额损耗费.且有如下两条规定:
①若每月用水量不超过最低限量立方米,只付基本费10元加上定额损耗费2元;
②若用水量超过立方米时,除了付以上同样的基本费和定额损耗费外,超过部分每立方米加付元的超额费.
解答以下问题:(1)写出每月水费(元)与用水量(立方米)的函数关系式;
(2)若该市某家庭今年一季度每月的用水量和支付的费用如下表所示:
月份
用水量(立方米)
水费(元)

5
17

6
22


12
 
试判断该家庭今年一、二、三各月份的用水量是否超过最低限量,并求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(14分)已知函数
(Ⅰ)求函数的最小值;
(Ⅱ)求证:
(Ⅲ)对于函数定义域上的任意实数,若存在常数,使得都成立,则称直线为函数的“分界线”.设函数是否存在“分界线”?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

定义,,.
(1)比较的大小;
(2)若,证明:
(3)设的图象为曲线,曲线处的切线斜率为,若,且存在实数,使得,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数上单调递减且满足.
(1)求的取值范围.
(2)设,求上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

某校为了规范教职工绩效考核制度,现准备拟定一函数用于根据当月评价分数(正常情况,且教职工平均月评价分数在50分左右,若有突出贡献可以高于100分)计算当月绩效工资元.要求绩效工资不低于500元,不设上限且让大部分教职工绩效工资在600元左右,另外绩效工资越低、越高人数要越少.则下列函数最符合要求的是(   )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数,若在区间上恒有解,则的取值范围为   .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

某计算装置有一个数据入口A和一个运算出口B,从入口A输入一个正整数n时,计算机通过循环运算,在出口B输出一个运算结果,记为f(n).计算机的工作原理如下:为默认值,f(n+1)的值通过执行循环体“f(n+1)=”后计算得出.则f(2)=       ;当从入口A输入的正整数n=__     _时,从出口B输出的运算结果是.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

定义在(0,)上的函数是它的导函数,且恒有成立,则(   )
A.B.
C.D.

查看答案和解析>>

同步练习册答案