精英家教网 > 高中数学 > 题目详情
在研究性学习中,我校高三某班的一个课题研究小组做“关于横波的研究实验”.根据实验记载,他们观察到某一时刻的波形曲线符合函数f(x)=2sin(ωx+φ)的图象,其部分图象如图所示,则f(0)=
 
考点:由y=Asin(ωx+φ)的部分图象确定其解析式
专题:三角函数的图像与性质
分析:由周期求出ω,由五点法作图求出φ的值,可得函数的解析式,从而求得f(0)的值.
解答: 解:由函数的图象可得
3
2
T=
3
2
ω
=
13π
4
-
π
4
=3π,求得ω=1.
再根据五点法作图可得1×
π
4
+φ=0,∴φ=-
π
4
,∴f(x)=2sin(x-
π
4
),
故f(0)=2sin(-
π
4
)=-
2

故答案为:-
2
点评:本题主要考查利用y=Asin(ωx+φ)的图象特征,由函数y=Asin(ωx+φ)的部分图象求解析式,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=lg(x-1),g(x)=lg(x2+1)
(1)求f(x)和g(x)的定义域;
(2)判断g(x)奇偶性,并证明你的结论;
(3)判断f(x)在其定义域上的单调性?并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和为Sn,已知Sn=2an-2n+1(n∈N*).
(1)求a1的值,并证明数列{
an
2n
}是等差数列;
(2)设bn=log2
an
n+1
,数列{
1
bn
}的前n项和为Bn,若存在整数m,使对任意n∈N*且n≥2,都有B3n-Bn
m
20
成立,求m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中满足a1=15,
an+1-an
n
=2,则
an
n
的最小值为(  )
A、10
B、2
15
-1
C、9
D、
27
4

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,已知AB,BC是⊙O的两条弦,AO⊥BC,AB=2,BC=2
3
,则⊙O的半径等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=Asin(ωx+φ)(A>0,ω>0)在x=1处取最大值,则(  )
A、f(x-1)一定是奇函数
B、f(x-1)一定是偶函数
C、f(x+1)一定是奇函数
D、f(x+1)一定是偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:

已知变量x与y呈相关关系,且由观测数据得到的样本数据散点图如图所示,则由该观测数据算得的回归方程可能是(  )
A、
?
y
=-1.314x+1.520
B、
?
y
=1.314x+1.520
C、
?
y
=1.314x-1.520
D、
?
y
=-1.314x-1.520

查看答案和解析>>

科目:高中数学 来源: 题型:

过点P(2,1)的直线l与圆C:(x-1)2+y2=4交于A,B两点,当∠ACB最小时,直线l的方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在R上的偶函数,且在[0,+∞)上为增函数,若f(log2x)>f(1),则x的取值范围是(  )
A、(2,+∞)
B、(
1
2
,2)
C、(0,
1
2
)∪(2,+∞)
D、(0,1)∪(2,+∞)

查看答案和解析>>

同步练习册答案