精英家教网 > 高中数学 > 题目详情

【题目】如图,已知是正三角形,EACD都垂直于平面ABC,且FBE的中点,

求证:(1平面ABC

2平面EDB.

3)求几何体的体积.

【答案】1)见解析(2)见解析(3

【解析】

1)如图:证明得到答案.

2)证明得到答案.

3)几何体转化为,利用体积公式得到答案.

1)F分别是BE的中点,取BA的中点M

FMEAFMEA1

EACD都垂直于平面ABC,∴CDEA

CDFM,又CDFM

∴四边形FMCD是平行四边形,∴FDMC

FD平面ABCMC平面ABC

FD∥平面ABC

2MAB的中点,△ABC是正三角形,所以CMAB

EA垂直于平面ABCCMAE

AEABA,所以CM⊥面EAB,∵AFEAB

CMAF,又CMFD,从而FDAF

FBE的中点,EAAB所以AFEB

EBFD是平面EDB内两条相交直线,所以AF⊥平面EDB

3)几何体的体积等于

中点,连接

平面

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,直三棱柱ABC﹣A1B1C1中,AA1=AB=AC=2,D,E,F分别是B1A1 , CC1 , BC的中点,AE⊥A1B1 , D为棱A1B1上的点.

(1)证明:DF⊥AE;
(2)求平面DEF与平面ABC所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正三棱锥P﹣ABC中E,F分别是AC,PC的中点,若EF⊥BF,AB=2,则三棱锥P﹣ABC的外接球的表面积(
A.4π
B.6π
C.8π
D.12π

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数在其定义域上为单调增函数,求的取值范围;

(2)记的导函数为,当时,证明:存在极小值点,且.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线的参数方程为为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,圆的极坐标方程为.

(1)求直线的普通方程和圆的直角坐标方程;

(2)若点是直线上的动点,过作直线与圆相切,切点分别为,若使四边形的面积最小,求此时点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校200名学生的数学期中考试成绩频率分布直方图如图所示,其中成绩分组区间是.

1)求图中的值;

2)根据频率分布直方图,估计这200名学生的平均分;

3)若这200名学生的数学成绩中,某些分数段的人数与英语成绩相应分数段的人数之比如下表所示,求英语成绩在的人数.

分数段

1:2

2:1

6:5

1:2

1:1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在梯形ABCD中,AB∥CD,AD=DC=CB=1,∠ABC=60°,四边形ACFE为矩形,平面ACFE⊥平面ABCD,CF=1.
(Ⅰ)求证:BC⊥平面ACFE;
(Ⅱ)点M在线段EF上运动,设平面MAB与平面FCB所成二面角的平面角为θ(θ≤90°),试求cosθ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设向量,令函数,若函数的部分图象如图所示,且点的坐标为.

(1)求点的坐标;

(2)求函数的单调增区间及对称轴方程;

(3)若把方程的正实根从小到大依次排列为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数),在以原点为极点, 轴正半轴为极轴的极坐标系中,直线的极坐标方程为

1)求曲线的普通方程和直线的倾斜角;

2)设点,直线和曲线交于两点,求的值.

查看答案和解析>>

同步练习册答案