精英家教网 > 高中数学 > 题目详情
如图,在长方体ABCD-A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动
(1)证明:A1D⊥平面D1EC1
(2)AE等于何值时,二面角D1-EC-D的大小为
π
4
考点:直线与平面垂直的判定,二面角的平面角及求法
专题:空间向量及应用
分析:以D为坐标原点,DA,DC,DD1所在的直线分别为x,y,z轴建立空间直角坐标系,设AE=x,则A1(1,0,1),D1(0,0,1),E(1,x,0),A(1,0,0),C(0,2,0).
(1)利用数量积只要判断A1D⊥D1E,A1D⊥D1C1
(2)设平面D1EC的法向量
n
=(a,b,c),利用法向量的特点求出x.
解答: 证明(1):以D为坐标原点,DA,DC,DD1所在的直线分别为x,y,z轴建立空间直角坐标系,
设AE=x,则A1(1,0,1),D1(0,0,1),E(1,x,0),A(1,0,0),C(0,2,0).
A1D
=(-1,0,-1),
D1E
=(1,x,-1),
D1C1
=
DC
=(0,2,0),
所以
A1D
D1E
=0,
A1D
D1C1
=0,
所以A1D⊥D1E,A1D⊥D1C1
所以A1D⊥平面D1EC1
解:(2)设平面D1EC的法向量
n
=(a,b,c),
CE
=(1,x-2,0),
D1C
=(0,2,-1),
DD1
=(0,0,1).
n
CE
=0
n
D1C
=0
.所以
a+b(x-2)=0
2b-c=0

令b=1,
∴c=2,a=2-x.∴
n
=(2-x,1,2).
依题意,cos
π
4
=
|
n
DD1
|
|
n
||
DD1
|
=
2
2
2
(2-x)2+5
=
2
2

解得x1=2+
3
(舍去),x1=2-
3

所以AE=2-
3
时,二面角D1-EC-D的大小为
π
4
点评:本题考查了利用空间直角坐标系,判断线面垂直以及求解二面角,注意法向量的求法是解题的关键,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若复数z与2+3i互为共轭复数,则复数z的模|z|=(  )
A、
13
B、5
C、7
D、13

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=(x-5)0+(x-2)-
1
3
的定义域是(  )
A、{x|x∈R且x≠5,x≠2}
B、{x|x>2}
C、{x|x>5}
D、{x|2<x<5或x>5}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:x2=4y的焦点为F,准线为l,A是l上一点,B是直线AF与C的一个交点,若
FA
=-4
FB
,则|BF|=(  )
A、
3
2
B、
5
2
C、3
D、5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在数列{an}和{bn}中,Sn为数列{an}的前n项和,且a1=1,Sn+n2=n(an+1),bn=a2n-1,求数列{bn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

在如图所示的几何体中,四边形ABED是矩形,四边形ADGC是梯形,AD⊥平面DEFG,EF∥DG,∠EDG=120°.AB=AC=FE=1,DG=2.
(Ⅰ)求证:AE∥平面BFGC;
(Ⅱ)求证:FG⊥平面ADF.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图是长和宽分别相等的两个矩形,给定下列四个命题:
①存在三棱柱,其正视图、侧视图如图;
②存在四棱柱,其俯视图与其中一个视图完全一样;
③存在圆柱,其正视图、侧视图如图;
④若矩形的长与宽分别是2和1,则该几何体的最大体积为4.
其中真命题的个数是(  )
A、4B、3C、2D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线
x2
a2
-
y2
b2
=1与椭圆
x2
m2
+
y2
b2
=1(a>0,m>b>0)的离心率互为倒数,则(  )
A、a2+b2=m2
B、a+b=m
C、a2=b2+m2
D、a=b+m

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex-ax-1(a∈R).
(1)求函数f(x)的单调区间;
(2)函数F(x)=f(x)-x1nx在定义域内是否存在零点?若存在,请指出有几个零点;若不存在,请说明理由:
(3)若g(x)=ln(ex-1)-lnx,当x∈(0,+∞)时,不等式f(g(x))<f(x)恒成立,求a的取值范围.

查看答案和解析>>

同步练习册答案