精英家教网 > 高中数学 > 题目详情
17.已知f(x)是奇函数,若x>0时,f(x)=sinx+cosx,则x<0时,f(x)=sinx-cosx.

分析 设x<0,可得-x>0.由于x>0时,f(x)=sinx+cosx.可得f(-x)=-sinx+cosx.利用f(x)是定义在R上的奇函数,可得f(x)=-f(-x),即可得出.

解答 解:设x<0,则-x>0.
∵x>0时,f(x)=sinx+cosx.
∴f(-x)=-sinx+cosx.
∵f(x)是定义在R上的奇函数,
∴f(x)=-f(-x)=sinx-cosx,
故答案为:sinx-cosx.

点评 本题考查了函数的奇偶性,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知8sinα+10cosβ=5,8cosα+10sinβ=5$\sqrt{3}$.求证:sin(α+β)=-sin($\frac{π}{3}$+α)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在(x+y)(x+1)4的展开式中x的奇数次幂项的系数之和为32,则y的值是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.定义:如果两个椭圆的离心率相等,那么称这两个椭圆相似,它们的长轴长之比(大于1)叫做这两个椭圆的相似比.(1)设m,n∈N*,试判断椭圆C1:$\frac{{x}^{2}}{m+1}$+$\frac{{y}^{2}}{m}$=1和椭圆C2:$\frac{{x}^{2}}{m+n}$+$\frac{{y}^{2}}{m+1}$=1能否相似?若能,求出它们的相似比;若不能,请说明理由.
(2)如图,在平面直角坐标系xOy中,设椭圆C3:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)和椭圆C4:$\frac{{x}^{2}}{{{a}^{2}}_{1}}$+$\frac{{y}^{2}}{{{b}^{2}}_{1}}$=1(a1>b1>0)相似,且a1>a,过椭圆C3的右焦点F且不垂直于x轴的直线l与这两个椭圆自上而下依次交于点A,B,C,D,射线OB,OC分别与椭圆C4交于点M,N,连接MN,AM,DN.
求证:①MN∥l;
②△ABM和△CDN的面积相等.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知双曲线${x^2}-\frac{y^2}{b^2}=1(b>0)$的一条渐近线过点(1,2),则b=2,其离心率为$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.偶函数f(x)满足:f(x+2)=f(x)对一切实数x成立,且当x∈(-2013,-2012)时,f(x)=cos $\frac{π}{2}$x,f(-2012)=a,f(-2013)=b,(a<b).
(1)若△ABC是钝角三角形,C是钝角,证明:f(sinA)>f(cosB);
(2)若f(x)的值域是[a,b],求a,b的值,并求方程f(x)=b的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设sinθ+cosθ=k.
(1)若θ是锐角,证明k>1;
(2)若k=$\frac{1}{5}$,且0<θ<π,求cosθ-sinθ的值;
(3)若k=1,求sin4θ+cos4θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=sin(ωx+φ)(ω>0,-π<φ<0)的最小正周期是π,函数图象过点P(0,1),则函数f(x)=sin(ωx+φ)(  )
A.在区间[-$\frac{π}{6}$,$\frac{π}{3}$]上单调递减B.在区间[-$\frac{π}{6}$,$\frac{π}{3}$]上单调递增
C.在区间[-$\frac{π}{3}$,$\frac{π}{6}$]上单调递减D.在区间[-$\frac{π}{3}$,$\frac{π}{6}$]上单调递增

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若a+2b=1(ab≠0),下列结论中错误的是(  )
A.ab的最大值为$\frac{1}{8}$B.$\frac{1}{ab}$的最小值为8
C.a2+ab+b2的最小值为$\frac{1}{4}$D.$\frac{1}{{{a^2}+ab+{b^2}}}$的最大值为4

查看答案和解析>>

同步练习册答案