精英家教网 > 高中数学 > 题目详情
若动点A、B分别在直线l1:x+y-7=0和l2:x+y-5=0上移动,则AB的中点M到原点的距离的最小值为______.
3
依题意知AB的中点M的集合为与直线l1:x+y-7=0和l2:x+y-5=0距离都相等的直线,则M到原点的距离的最小值为原点到该直线的距离,设点M所在直线的方程为l:x+y+m=0,根据平行线间的距离公式得 |m+7|=|m+5| m=-6,
以l的方程为x+y-6=0,根据点到直线的距离公式,得M到原点的距离的最小值为=3.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

直线与曲线交于两点,若的面积为1,求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

过点P(3,4)的动直线与两坐标轴的交点分别为A,B,过A,B分别作两轴的垂线交于点M,则点M的轨迹方程是。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系xOy中,已知圆C1:(x+3)2+(y-1)2=4和圆C2:(x-4)2+(y-5)2=4.

(1)若直线l过点A(4,0),且被圆C1截得的弦长为2,求直线l的方程;
(2)设P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线l1和l2,它们分别与圆C1和圆C2相交,且直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,试求所有满足条件的点P的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

圆x2+y2-4x=0在点P(1,)处的切线方程为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知直线l:x+2y-2=0,试求:
(1) 点P(-2,-1)关于直线l的对称点坐标;
(2) 直线l1:y=x-2关于直线l对称的直线l2的方程;
(3) 直线l关于点(1,1)对称的直线方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

两条直线l1:(m+3)x+2y=5-3m,l2:4x+(5+m)y=16,分别求满足下列条件的m的值.
(1) l1与l2相交;
(2) l1与l2平行;
(3) l1与l2重合;
(4) l1与l2垂直.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

过点M(0,1)作一条直线,使它被两条直线l1:x-3y+10=0,l2:2x+y-8=0所截得的线段恰好被M点平分.求此直线方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知直线l1axy+2a+1=0和l2:2x-(a-1)y+2=0(a∈R),则l1l2的充要条件是a=________.

查看答案和解析>>

同步练习册答案