【题目】设,函数.
(1)当时,求函数的单调区间;
(2)若函数在区间上有唯一零点,试求a的值.
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)指出函数的基本性质:定义域,奇偶性,单调性,值域(结论不需证明),并作出函数的图象;
(2)若关于的不等式恒成立,求实数的取值范围;
(3)若关于的方程恰有个不同的实数解,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=4cos ωx·sin+a(ω>0)图象上最高点的纵坐标为2,且图象上相邻两个最高点的距离为π.
(1)求a和ω的值;
(2)求函数f(x)在[0,π]上的单调递减区间.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某饮水机厂生产的A,B,C,D四类产品,每类产品均有经济型和豪华型两种型号,某一月的产量如下表(单位:台)
A | B | C | D | |
经济型 | 5000 | 2000 | 4500 | 3500 |
豪华型 | 2000 | 3000 | 1500 | 500 |
(1)在这一月生产的饮水机中,用分层抽样的方法抽取n台,其中有A类产品49台,求n的值;
(2)用随机抽样的方法,从C类经济型饮水机中抽取10台进行质量检测,经检测它们的得分如下:7.9,9.4,7.8,9.4,8.6,9.2,10,9.4,7.9,9.4,从D类经济型饮水机中抽取10台进行质量检测,经检测它们的得分如下:8.9,9.3,8.8,9.2,8.6,9.2,9.0,9.0,8.4,8.6,根据分析,你会选择购买C类经济型饮水机与D类经济型饮水机中哪类产品.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为普及学生安全逃生知识与安全防护能力,某学校高一年级举办了安全知识与安全逃生能力竞赛,该竞赛分为预赛和决赛两个阶段,预赛为笔试,决赛为技能比赛,现将所有参赛选手参加笔试的成绩(得分均为整数,满分为分)进行统计,制成如下频率分布表.
分数(分数段) | 频数(人数) | 频率 |
合计 |
(1)求表中,,,,的值;
(2)按规定,预赛成绩不低于分的选手参加决赛.已知高一(2)班有甲、乙两名同学取得决赛资格,记高一(2)班在决赛中进入前三名的人数为,求的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数是定义在上的偶函数,且当时, .现已画出函数在轴左侧的图象,如图所示,并根据图象:
(1)直接写出函数, 的增区间;
(2)写出函数, 的解析式;
(3)若函数, ,求函数的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,直线l的参数方程为(t为参数,),以坐标原点为极点,轴正半轴为极轴,取相同的长度单位建立极坐标系,曲线C的极坐标方程为.
(1)当时,写出直线l的普通方程及曲线C的直角坐标方程;
(2)已知点,设直线l与曲线C交于A,B两点,试确定的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com