精英家教网 > 高中数学 > 题目详情

【题目】已知角始边与轴的非负半轴重合,与圆相交于点,终边与圆相交于点,点轴上的射影为 的面积为,函数的图象大致是( )

A. B.

C. D.

【答案】B

【解析】如图A(2,0),在RT△BOC中,


|BC|=2|sinx|,|OC|=2|cosx|,
∴△ABC的面积为S(x)= |BC||AC|≥0,
所以排除C、D;
选项A、B的区别是△ABC的面积为S(x)何时取到最大值?
下面结合选项A、B中的图象利用特值验证
x=时,△ABC的面积为S(x)=×2×2=2,
x=时,|BC|=2|sin|= ,|OC|=2|cos|=|AC|=2+∴△ABC的面积为S(x)=×× =+1>2,
综上可知,答案B的图象正确,
故选:B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)设函数,试讨论函数零点的个数;

(2)若,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 (常数ab>0,且a>b)的左、右焦点分别为F1F2MN为短轴的两个端点,且四边形F1MF2N是面积为4的正方形.

(1)求椭圆的方程;

(2)过原点且斜率分别为k和-k(k≥2)的两条直线与椭圆的交点为ABCD(按逆时针顺序排列,且点A位于第一象限内),求四边形ABCD的面积S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是等差数列,满足,数列满足,且是等比数列.

1)求数列的通项公式;

2)求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当时,求函数的单调区间.

(2)当时,不等式上恒成立,求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,半径为2的圆内有两条圆弧,一质点M自点A开始沿弧A-B-C-O-A-D-C做匀速运动,则其在水平方向(向右为正)的速度的图像大致为( )

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】通过随机询问110名大学生是否爱好某项运动,得到列联表:

总计

爱好

40

20

60

不爱好

20

30

50

总计

60

50

110

K2,得K2≈7.8.

附表:

P(K2k0)

0.050

0.010

0.001

k0

3.841

6.635

10.828

参照附表,得到的正确结论是(  )

A. 有99%以上的把握认为“爱好该项运动与性别有关”

B. 有99%以上的把握认为“爱好该项运动与性别无关”

C. 在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”

D. 在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲乙丙三辆汽车在不同速度下的燃油效率情况,下列叙述中正确的是( )

A. 消耗1升汽油,乙车最多可行驶5千米

B. 以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多

C. 甲车以80千米/小时的速度1小时,消耗10升汽油

D. 某城市机动车最高限速80千米/小时,相同条件下,在该市用丙车比乙车更省油.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为常数)与轴有唯一的公关点

(Ⅰ)求函数的单调区间

(Ⅱ)曲线在点处的切线斜率为若存在不相等的正实数满足证明

查看答案和解析>>

同步练习册答案