【题目】某产品有4件正品和2件次品混在了一起,现要把这2件次品找出来,为此每次随机抽取1件进行测试,测试后不放回,直至次品全部被找出为止.
(1)求“第1次和第2次都抽到次品”的概率;
(2)设所要测试的次数为随机变量X,求X的分布列和数学期望.
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P﹣ABCD中,底面ABCD为菱形,∠BAD=60°,Q是AD的中点.
(1)若PA=PD,求证:平面PQB⊥平面PAD;
(2)若平面APD⊥平面ABCD,且PA=PD=AD=2,在线段PC上是否存在点M,使二面角M﹣BQ﹣C的大小为60°.若存在,试确定点M的位置,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】电视台播放甲、乙两套连续剧,每次播放连续剧时,需要播放广告.已知每次播放甲、乙两套连续剧时,连续剧播放时长、广告播放时长、收视人次如下表所示:
连续剧播放时长(分钟) | 广告播放时长(分钟) | 收视人次(万) | |
甲 | 70 | 5 | 60 |
乙 | 60 | 5 | 25 |
已知电视台每周安排的甲、乙连续剧的总播放时间不多于600分钟,广告的总播放时间不少于30分钟,且甲连续剧播放的次数不多于乙连续剧播放次数的2倍.分别用x,y表示每周计划播出的甲、乙两套连续剧的次数.(13分)
(I)用x,y列出满足题目条件的数学关系式,并画出相应的平面区域;
(II)问电视台每周播出甲、乙两套连续剧各多少次,才能使总收视人次最多?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆 + =1(a>b>0)的左焦点为F(﹣c,0),右顶点为A,点E的坐标为(0,c),△EFA的面积为 .(14分)
(I)求椭圆的离心率;
(II)设点Q在线段AE上,|FQ|= c,延长线段FQ与椭圆交于点P,点M,N在x轴上,PM∥QN,且直线PM与直线QN间的距离为c,四边形PQNM的面积为3c.
(i)求直线FP的斜率;
(ii)求椭圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某高校在上学期依次举行了“法律、环保、交通”三次知识竞赛活动,要求每位同学至少参加一次活动.该高校2014级某班50名学生在上学期参加该项活动的次数统计如图所示.
(1)从该班中任意选两名学生,求他们参加活动次数不相等的概率.
(2)从该班中任意选两名学生,用ξ表示这两人参加活动次数之差的绝对值,求随机变量ξ的分布列及数学期望Eξ.
(3)从该班中任意选两名学生,用η表示这两人参加活动次数之和,记“函数f(x)=x2﹣ηx﹣1在区间(3,5)上有且只有一个零点”为事件A,求事件A发生的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列有关命题的说法正确的是( )
A. “若x>1,则2x>1”的否命题为真命题
B. “若cosβ=1,则sinβ=0”的逆命题是真命题
C. “若平面向量a,b共线,则a,b方向相同”的逆否命题为假命题
D. 命题“若x>1,则x>a”的逆命题为真命题,则a>0
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知平行四边形ABCD中,∠A=45°,且AB=BD=1,将△ABD沿BD折起,使得平面ABD⊥平面BCD,如图所示:
(1)求证:AB⊥CD;
(2)若M为AD的中点,求二面角A﹣BM﹣C的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com