精英家教网 > 高中数学 > 题目详情
20.已知函数f(x)的导函数为f′(x),e为自然对数的底数,若函数f(x)满足xf′(x)+f(x)=$\frac{lnx}{x}$,且f(e)=$\frac{1}{e}$,则不等式f(x)-x>$\frac{1}{e}$-e的解集是(0,e).

分析 先求出函数的解析式,再令y=f(x)-x,确定函数在定义域内单调递减,即可解出不等式.

解答 解:∵xf?(x)+f(x)=$\frac{lnx}{x}$,
∴(xf(x))?=$\frac{lnx}{x}$,
两边积分xf(x)=$\frac{1}{2}$ln2x+C,
∴f(x)=$\frac{1}{x}$•($\frac{1}{2}$ln2x+C),
∵f(e)=$\frac{1}{e}$,
∴f(e)=$\frac{1}{e}$($\frac{1}{2}$+C)=$\frac{1}{e}$,
∴C=$\frac{1}{2}$,
∴f(x)=$\frac{1}{x}$•($\frac{1}{2}$ln2x+$\frac{1}{2}$),
令y=f(x)-x,则y′=$\frac{{-(lnx+1)}^{2}}{{2x}^{2}}$-1<0,
∴函数在定义域内单调递减,
∵f(x)-x>$\frac{1}{e}$-e,
∴f(x)-x>f(e)-e,
∴0<x<e.
故答案为:(0,e).

点评 本题考查了解不等式与利用导数研究函数的单调性问题,解题的关键的如何确定函数的解析式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.如图1,已知四边形ABFD为直角梯形,$AB∥DF,∠ADF=\frac{π}{2},△ADE$为等边三角形,AD=DF=2AF=2,C为DF的质点,如图2,将平面AED、BCF分别沿AD、BC折起,使得平面AED⊥平面ABCD,平面BCF⊥平面ABCD,连接EF、DF,设G为AE上任意一点.
(1)证明:DG∥平面BCF;
(2)求平面DEF与平面BCF所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若a<b<0,则以下结论正确的是(  )
A.a2<ab<b2B.a2<b2<abC.a2>ab>b2D.a2>b2>ab

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设三个互不相等的数a,b,c成等比数列(a<b<c).其积为27,又a,b,c-4成等差数列,求a,b,c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在△ABC中,已知BC=6,C=45°,cosA=$\frac{4}{5}$,则△ABC的面积为21.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设函数f(x)=x2-2x+alnx.
(Ⅰ)若函数f(x)有两个极值点x1,x2,且x1<x2,求实数a的取值范围;
(Ⅱ)证明:f(x2)>-$\frac{3+2ln2}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=$\frac{{{{(x-a)}^2}}}{lnx}$(其中a为常数).
(Ⅰ)当a=0时,求函数的单调区间;
(Ⅱ)a≥$\frac{1}{2}$且函数f(x)有3个极值点,求a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知正三棱柱ABC-A1B1C1所有的棱长均为2,D是CC1的中点.
(1)求多面体ABD-A1B1C1的体积.
(2)求直线CC1与平面ABD所成角的大小.
(3)(理科)求二面角A-BD-B1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数f(x)=x3-3x+2的极大值点是(  )
A.x=±1B.x=1C.x=0D.x=-1

查看答案和解析>>

同步练习册答案