精英家教网 > 高中数学 > 题目详情
5.过抛物线y2=4ax(a>0)的焦点F作斜率为-1的直线l,l与离心率为e的双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({b>0})$的两条渐近线的交点分别为B,C.若xB,xC,xF分别表示B,C,F的横坐标,且$x_F^2=-{x_B}•{x_C}$,则e=(  )
A.6B.$\sqrt{6}$C.3D.$\sqrt{3}$

分析 过抛物线y2=4ax(a>0)的焦点F(a,0),所以直线y=-x+a与y=±$\frac{b}{a}$交于B、C两点,求出B、C的横坐标,再根据 且$x_F^2=-{x_B}•{x_C}$,建立关于a、b的等式解出b2=2a2,可得此双曲线的离心率.

解答 解:过抛物线y2=4ax(a>0)的焦点F作斜率为-1的直线l,直线方程为y=-x+a,
∵双曲线的渐近线为y=±$\frac{b}{a}$x,
∴直线y=-x+a与渐近线的交点横坐标分别为xB=$\frac{{a}^{2}}{a-b}$,xB=$\frac{{a}^{2}}{a+b}$,xF=a,
∵$x_F^2=-{x_B}•{x_C}$,
∴a2=-$\frac{{a}^{4}}{{a}^{2}-{b}^{2}}$,
解得2a2=b2
∴e=$\frac{c}{a}$=$\sqrt{1+\frac{{b}^{2}}{{a}^{2}}}$=$\sqrt{3}$,
故选:D

点评 本题给出双曲线满足的条件,求双曲线的离心率.着重考查了直线的交点坐标、双曲线的标准方程与简单几何性质等知识,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.在△ABC中,c=2a,B=120°,且△ABC面积为$\frac{\sqrt{3}}{2}$.
(1)求b的值;
(2)求tanA的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知向量$\overrightarrow{a}$=(m,-1),$\overrightarrow{b}$=($\frac{1}{2},\frac{\sqrt{3}}{2}$)
(1)若m=-$\sqrt{3}$,求$\overrightarrow{a}$与$\overrightarrow{b}$的夹角θ;
(2)设$\overrightarrow{a}⊥\overrightarrow{b}$.
①求实数m的值;
②若存在非零实数k,t,使得[$\overrightarrow{a}$+(t2-3)$\overrightarrow{b}$]⊥(-k$\overrightarrow{a}$+t$\overrightarrow{b}$),求$\frac{k+{t}^{2}}{t}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数f(x)=x+cosx在[0,π]上的最小值为(  )
A.-2B.0C.-$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图所示的茎叶图记录了甲、乙两组各5名同学的投篮命中次数,乙组记录中有一个数据模糊,无法确认,在图中用x表示.
(1)若乙组同学投篮命中次数的平均数比甲组同学的平均数少1,求x及乙组同学投篮命中次数的方差;
(2)在(1)的条件下,分别从甲、乙两组投篮命中次数低于10次的同学中,各随机选取一名,求这两名同学的投篮命中次数之和为16的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知圆C的方程为:x2+y2=9,过圆C上一动点M作平行于y轴的直线m,设m与x轴的交点为N,若向量$\overrightarrow{OQ}=\overrightarrow{OM}+\overrightarrow{ON}$,则动点Q的轨迹方程是$\frac{x^2}{4}+{y^2}=9$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在数列{an}中,a1=2,2an+1-2an=1,则S12=57.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在曲线y=x2(x≥0)上某一点A处作一切线使之与曲线以及x轴所围成的面积为$\frac{1}{12}$,试求:
(1)切点A的坐标;
(2)过切点A的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如图叶茎图记录了甲、乙两组各6名学生在一次数字测试中的成绩(单位:分),已知甲组数据的众数为84,乙组数据的平均数即为甲组数据的中位数,则x,y的值分别为(  )
A.4,5B.5,4C.4,4D.5,5

查看答案和解析>>

同步练习册答案