精英家教网 > 高中数学 > 题目详情
20.曲线C:$\left\{\begin{array}{l}{x=2cosθ}\\{y=3sinθ}\end{array}\right.$(θ为参数)上的点到其焦点的距离的最小值为(  )
A.$\sqrt{5}$-3B.$\sqrt{5}$-2C.3-$\sqrt{5}$D.1

分析 把参数方程化为普通方程,求出a、c的值,再根据椭圆上的点到其焦点的距离的最小值为a-c,得出结论.

解答 解:曲线C:$\left\{\begin{array}{l}{x=2cosθ}\\{y=3sinθ}\end{array}\right.$(θ为参数),即$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{9}$=1,
∴a=3,b=2,c=$\sqrt{{a}^{2}{-b}^{2}}$=$\sqrt{5}$,它上的点到其焦点的距离的最小值为a-c=3-$\sqrt{5}$,
故选:C.

点评 本题主要考查椭圆的参数方程,椭圆的方程,把参数方程化为普通方程,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.已知实数x,y满足条件$\left\{\begin{array}{l}x+y-2≥0\\ x-y≤0,y≤3\end{array}$则z=2x+y的最大值是9.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知直线f(x)=k0x+b与曲线g(x)=$\frac{{k}^{2}}{x}$交于点M(m,-1),N(n,2),则不等式f-1(x)≥g-1(x)的解集为[-1,0)∪[2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在柱坐标系中,点P的坐标为(2,$\frac{π}{3}$,1),则点P的直角坐标为(  )
A.($\sqrt{3}$,-1,1)B.($\sqrt{3}$,1,1)C.(-1,$\sqrt{3}$,1)D.(1,$\sqrt{3}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.如图,棱长为3的正方体的顶点A在平面α上,三条棱AB、AC、AD都在平面α的同侧.若顶点B,C到平面α的距离分别为1,$\sqrt{2}$.建立如图所示的空间直角坐标系,设平面α的一个法向量为(x1,y1,z1),顶点D到平面α的距离为h.若x1=1,则y1+z1+h=$\sqrt{2}$+2$\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知E,F为双曲线$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的左右焦点,抛物线y2=2px(p>0)与双曲线有公共的焦点F,且与双曲线交于不同的两点A,B,若$|AF|=\frac{4}{5}|BE|$,则双曲线的离心率为$4±\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若sinα=$\frac{5}{13}$,α为第二象限角,则cosα=(  )
A.-$\frac{5}{13}$B.-$\frac{12}{13}$C.$\frac{5}{13}$D.$\frac{12}{13}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知直线ax+by+c=0不经过第一象限,且ab>0,则有(  )
A.c<0B.c>0C.ac≥0D.ac<0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知$tan\;α+\frac{1}{tan\;α}=\frac{5}{2}$,求$2{sin^2}({3π-α})-3cos({\frac{π}{2}+α})sin({\frac{3π}{2}-α})+2$的值.

查看答案和解析>>

同步练习册答案