精英家教网 > 高中数学 > 题目详情

已知各项为正数的等差数列{an}的前20项和为100,那么a7•a14的最大值为


  1. A.
    25
  2. B.
    50
  3. C.
    100
  4. D.
    不存在
A
分析:设出等差数列的通项公式和前n项和公式分别为an=a+(n-1)d,sn=na+,由前20项和为100得到2a+19d=10,而a7+a14=(a+6d)+(a+13d)=2a+19d=10,所以利用基本不等式a+b≥2当且仅当a=b时取等号,且a,b为正数,得到a7•a14的最大值即可.
解答:设等差数列首项为a,公差为d,则an=a+(n-1)d,sn=na+
因为前20项和为100得s20=20a+190d=100即2a+19d=10
所以a7+a14=(a+6d)+(a+13d)=2a+19d=10,
因为各项为正,所以a7+a14≥2即a7•a14=25
所以a7•a14的最大值为25
故选A
点评:考查学生运用等差数列性质的能力,以及利用基本不等式证明的能力,掌握等差数列的通项公式和求和公式的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知{an}为各项均为正数的等比数列,Sn是它的前n项和,若a2•a3=2a1,且a4与a6的等差中项为
5
4
,则S4
=(  )
A、35B、33C、30D、29

查看答案和解析>>

科目:高中数学 来源: 题型:

已知各项均为正数的数列{an}满足an+12-an+1an-2an2=0(n∈N*)且a3+2是a2、a4的等差中项.
(1)求数列{an}的通项公式an
(2)若bn=anlog
12
an
,求证:{bn}的前n项和Sn≤-2.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知各项为正数的数列满足,且的等差中项.

(1)求数列的通项公式

(2)若,求使成立的正整数n的最小值.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年天津市高三第四次月考文科数学试卷(解析版) 题型:填空题

已知各项为正数的数列满足(),且的等差中项,则数列的通项公式是          

 

查看答案和解析>>

科目:高中数学 来源:山西省平遥中学09-10学年高二10月质检 题型:解答题

 

已知各项为正数的数列满足,且的等差中项.

(1)求数列的通项公式

(2)若,求使成立的正整数n的最小值.

 

 

 

 

 

 

 

查看答案和解析>>

同步练习册答案