精英家教网 > 高中数学 > 题目详情
在三棱柱ABC-A1B1C1中,∠ACB=120°,AC=CB=1,D1是线段A1B1上一动点(可以与A1或B1重合).过D1和CC1的平面与AB交于D.
(1)若四边形CDD1C1总是矩形,求证:三棱柱ABC-A1B1C1为直三棱柱;
(2)在(1)的条件下,求二面角B-AD1-C的取值范围.
分析:(1)利用四边形CDD1C1总是矩形,证明CC1⊥平面ABC即可;
(2)求出平面BAD1、平面ACD1的一个法向量,再利用向量的夹角公式,我们可以求出二面角B-AD1-C的取值范围.
解答:(1)证明:∵D1是线段A1B1上一动点(可以与A1或B1重合).过D1和CC1的平面与AB交于D,四边形CDD1C1总是矩形,
∴CC1⊥平面ABC
∴三棱柱ABC-A1B1C1为直三棱柱…(5分);
(2)解:建立如图所示的直角坐标系,则A(0,-
3
2
,0),C(
3
2
,0,0),
设D(0,a,0),则D1(0,a,1),a∈[-
3
2
3
2
],
显然平面BAD1的一个法向量为
m
=(1,0,0)

设平面ACD1的一个法向量为
n
=(x,y,z)

AC
=(
3
2
3
2
,0)
CD1
=( -
3
2
,a,1)

n
AC
=0
n
CD1
=0

3
2
x+
3
2
y=0
-
3
2
x+ay+z=0

令x=1,∴y=-1,z=a+
3
2

∴平面ACD1的一个法向量
n
=(1,-1,a+
3
2
)
,于是
m
n
=1

设二面角B-AD1-C的平面角为θ,∴cosθ=
m
n
|
m
||
n
|
1
|
m
||
n
|

|
m
|=1
|
n
|
2=2+(a+
3
2
2∈[2,5],
∴cosθ∈[
5
5
2
2
],
所以θ∈[arccos
5
5
π
4
]…(12分)
点评:三棱柱为直棱柱的条件是侧棱与底面垂直,(2)问研究二面角的平面角,利用向量的方法,减少了辅助线的添加,将立体几何问题代数化,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知三棱柱ABC-A1B1C1的三视图如图所示,其中主视图AA1B1B和左视图B1BCC1均为矩形,在俯视图△A1B1C1中,A1C1=3,A1B1=5,cos∠A1=
35

(1)在三棱柱ABC-A1B1C1中,求证:BC⊥AC1
(2)在三棱柱ABC-A1B1C1中,若D是底边AB的中点,求证:AC1∥平面CDB1
(3)若三棱柱的高为5,求三视图中左视图的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图:在正三棱柱ABC-A1 B1 C1中,AB=
AA13
=a,E,F分别是BB1,CC1上的点且BE=a,CF=2a.
(Ⅰ)求证:面AEF⊥面ACF;
(Ⅱ)求三棱锥A1-AEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在三棱柱ABC-A1B1C1中,已知AB=AC=AA1=
5
,BC=4,在A1在底面ABC的投影是线段BC的中点O.
(1)求点C到平面A1ABB1的距离;
(2)求二面角A-BC1-B1的余弦值;
(3)若M,N分别为直线AA1,B1C上动点,求MN的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江西)在三棱柱ABC-A1B1C1中,已知AB=AC=AA1=
5
,BC=4,在A1在底面ABC的投影是线段BC的中点O.
(1)证明在侧棱AA1上存在一点E,使得OE⊥平面BB1C1C,并求出AE的长;
(2)求平面A1B1C与平面BB1C1C夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•北京)如图,在三棱柱ABC-A1B1C1中,AA1C1C是边长为4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5.
(Ⅰ)求证:AA1⊥平面ABC;
(Ⅱ)求证二面角A1-BC1-B1的余弦值;
(Ⅲ)证明:在线段BC1上存在点D,使得AD⊥A1B,并求
BDBC1
的值.

查看答案和解析>>

同步练习册答案