【题目】设正项数列的前项和为,且满足:,,.
(Ⅰ)求数列的通项公式;
(Ⅱ)若正项等比数列满足,,且,数列的前项和为,若对任意,均有恒成立,求实数的取值范围.
【答案】(Ⅰ)an=2n;(Ⅱ)[,+∞).
【解析】
(Ⅰ)对递推关系再递推一步,两式相减,最后结合等差数列的定义进行求解即可;
(Ⅱ)根据等差数列的通项公式结合已知求出等比数列的通项公式,最后利用错位相减法、判断数列的单调性进行求解即可.
(Ⅰ)因为,所以(n≥2),
两式相减得:an+12﹣an2=4an+4,即an+12=(an+2)2(n≥2),
又因为数列{an}的各项均为正数,所以an+1=an+2(n≥2),
又因为a2=4,16=a12+4+4,可得a1=2,
所以当n=1时上式成立,即数列{an}是首项为2、公差为2的等差数列,
所以;
(Ⅱ)由(1)可知b1=a1=2,b3=a4=8,所以正项等比数列的公比为:,
因此bn=;cn=.
①
②
① —②得:
恒成立,等价于恒成立,
所以恒成立,
设kn=,则kn+1﹣kn=﹣=,
所以当n≤4时kn+1>kn,当n>4时kn+1<kn,
所以
所以当kn的最大值为k5=,故m≥,
即实数m的取值范围是:[,+∞).
科目:高中数学 来源: 题型:
【题目】“活水围网”养鱼技术具有养殖密度高、经济效益好的特点.研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度(单位:千克/年)是养殖密度(单位:尾/立方米)的函数.当时,的值为2千克/年;当时,是的一次函数;当时,因缺氧等原因,的值为0千克/年.
(1)当时,求关于的函数表达式.
(2)当养殖密度为多少时,鱼的年生长量(单位:千克/立方米)可以达到最大?并求出最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一只小蜜蜂位于数轴上的原点处,小蜜蜂每一次具有只向左或只向右飞行一个单位或者两个单位距离的能力,且每次飞行至少一个单位.若小蜜蜂经过5次飞行后,停在数轴上实数3位于的点处,则小蜜蜂不同的飞行方式有多少种?( )
A. 5 B. 25 C. 55 D. 75
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,四边形是菱形, ,平面平面
在棱上运动.
(1)当在何处时, 平面;
(2)已知为的中点, 与交于点,当平面时,求三棱锥的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆 : ( )的离心率 ,直线 被以椭圆 的短轴为直径的圆截得的弦长为 .
(1)求椭圆 的方程;
(2)过点 的直线 交椭圆于 , 两个不同的点,且 ,求 的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分12分)
已知椭圆:的左、右顶点分别为A,B,其离心率,点为椭圆上的一个动点,面积的最大值是.
(1)求椭圆的方程;
(2)若过椭圆右顶点的直线与椭圆的另一个交点为,线段的垂直平分线与轴交于点,当时,求点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系中,曲线,曲线为参数), 以坐标原点为极点, 轴的正半轴为极轴建立极坐标系.
(1)求曲线的极坐标方程;
(2)若射线分别交于两点, 求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】汉字听写大会不断创收视新高,为了避免“书写危机”,弘扬传统文化,某市大约10万名市民进行了汉字听写测试现从某社区居民中随机抽取50名市民的听写测试情况,发现被测试市民正确书写汉字的个数全部在160到184之间,将测试结果按如下方式分成六组:第1组,第2组,,第6组,如图是按上述分组方法得到的频率分布直方图.
若电视台记者要从抽取的市民中选1人进行采访,求被采访人恰好在第2组或第6组的概率;
试估计该市市民正确书写汉字的个数的平均数与中位数;
已知第4组市民中有3名男性,组织方要从第4组中随机抽取2名市民组成弘扬传统文化宣传队,求至少有1名女性市民的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com