精英家教网 > 高中数学 > 题目详情

【题目】设 ,已知0<a<b<c,且f(a)f(b)f(c)<0,若x0是函数f(x)的一个零点,则下列不等式不可能成立的是(
A.x0<a
B.0<x0<1
C.b<x0<c
D.a<x0<b

【答案】D
【解析】解:∵ ,在R上是减函数,0<a<b<c,且f(a)f(b)f(c)<0, ∴f(a)、f(b)、f(c)中一项为负,两项为正数;或者三项均为负数;
即:f(c)<0,0<f(b)<f(a);或f(a)<f(b)<f(c)<0;
由于实数x0 是函数y=f(x)的一个零点,
当f(c)<0,0<f(b)<f(a)时,b<x0<c,此时B、C成立;
当f(a)<f(b)<f(c)<0时,x0<a,此时A成立;
综上可得,D不可能成立;
故选:D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2﹣alnx(a>0)的最小值是1.
(Ⅰ)求a;
(Ⅱ)若关于x的方程f2(x)ex﹣6mf(x)+9mex=0在区间[1,+∞)有唯一的实根,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}中,a1=2,a2=4,设Sn为数列{an}的前n项和,对于任意的n>1,n∈N* , Sn+1+Sn1=2(Sn+1).
(1)求数列{an}的通项公式;
(2)设bn= ,求{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角A,B,C的对边分别为a,b,c,若 = ,则这个三角形必含有(
A.90°的内角
B.60°的内角
C.45°的内角
D.30°的内角

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=ax﹣lnx,x∈(0,e],g(x)= ,其中e是自然对数的底数,a∈R.
(Ⅰ)当a=1时,求函数f(x)的单调区间和极值;
(Ⅱ)求证:在(Ⅰ)的条件下,f(x)>g(x)+
(Ⅲ)是否存在实数a,使f(x)的最小值是3,若存在,求出a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某批发市场对某种商品的周销售量(单位:吨)进行统计,最近100周的统计结果如下表所示:

周销售量

2

3

4

频数

20

50

30


(1)根据上面统计结果,求周销售量分别为2吨,3吨和4吨的频率;
(2)已知每吨该商品的销售利润为2千元,ξ表示该种商品两周销售利润的和(单位:千元),若以上述频率作为概率,且各周的销售量相互独立,求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , 且对任意正整数n都有an= Sn+2成立.若bn=log2an , 则b1008=(
A.2017
B.2016
C.2015
D.2014

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,AC是圆O的直径,点B在圆O上,∠BAC=30°,BM⊥AC交AC于点M,EA⊥平面ABC,FC∥EA,AC=4,EA=3,FC=1.
(Ⅰ)证明:EM⊥BF;
(Ⅱ)求平面BEF与平面ABC所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若数列{an}是公差为2的等差数列,数列{bn}满足b1=1,b2=2,且anbn+bn=nbn+1
(Ⅰ)求数列{an}、{bn}的通项公式;
(Ⅱ)设数列{cn}满足cn= ,数列{cn}的前n项和为Tn , 若不等式(﹣1)nλ<Tn+ 对一切n∈N* , 求实数λ的取值范围.

查看答案和解析>>

同步练习册答案