精英家教网 > 高中数学 > 题目详情

【题目】已知二次函数fx)满足条件f0)=1,及fx+1)﹣fx)=2x

1)求函数fx)的解析式;

2)在区间[11]上,yfx)的图象恒在y2x+m的图象上方,试确定实数m的取值范围.

【答案】12m<﹣1

【解析】

1)根据二次函数fx)满足条件f0)=1,及fx+1)﹣fx)=2x,可求f1)=1f(﹣1)=3,从而可求函数fx)的解析式;

2)在区间[11]上,yfx)的图象恒在y2x+m的图象上方,等价于x2x+12x+m[11]上恒成立,等价于x23x+1m[11]上恒成立,求出左边函数的最小值,即可求得实数m的取值范围.

解:(1)令x0,则∵fx+1)﹣fx)=2x

f1)﹣f0)=0

f1)=f0

f0)=1

f1)=1

∴二次函数图象的对称轴为

∴可令二次函数的解析式为fx

x=﹣1,则∵fx+1)﹣fx)=2x

f0)﹣f(﹣1)=﹣2

f0)=1

f(﹣1)=3

a1

∴二次函数的解析式为

2)∵在区间[11]上,yfx)的图象恒在y2x+m的图象上方

x2x+12x+m[11]上恒成立

x23x+1m[11]上恒成立

gx)=x23x+1,则gx)=(x2

gx)=x23x+1[11]上单调递减,

gxming1)=﹣1

m<﹣1.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数fx=,若对任意给定的m∈(1,+∞),都存在唯一的x0R满足ffx0))=2a2m2+am,则正实数a的取值范围为(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果对一切实数x、y,不等式 ﹣cos2x≥asinx﹣ 恒成立,则实数a的取值范围是(
A.(﹣∞, ]
B.[3,+∞)
C.[﹣2 ,2 ]
D.[﹣3,3]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知无穷数列{an}的各项都是正数,其前n项和为Sn , 且满足:a1=a,rSn=anan+1﹣1,其中a≠1,常数r∈N;
(1)求证:an+2﹣an是一个定值;
(2)若数列{an}是一个周期数列(存在正整数T,使得对任意n∈N* , 都有an+T=an成立,则称{an}为周期数列,T为它的一个周期,求该数列的最小周期;
(3)若数列{an}是各项均为有理数的等差数列,cn=23n1(n∈N*),问:数列{cn}中的所有项是否都是数列{an}中的项?若是,请说明理由,若不是,请举出反例.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率e= ,左、右焦点分别为F1、F2 , 定点,P(2, ),点F2在线段PF1的中垂线上.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线l:y=kx+m与椭圆C交于M、N两点,直线F2M、F2N的倾斜角分别为α、β且α+β=π,求证:直线l过定点,并求该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱ABC﹣A1B1C1中,AB=AC=CC1 , 平面BAC1⊥平面ACC1A1 , ∠ACC1=∠BAC1=60°,AC1∩A1C=O.
(Ⅰ)求证:BO⊥平面AA1C1C;
(Ⅱ)求二面角A﹣BC1﹣B1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是不小于3的正整数,集合,对于集合中任意两个元素.

定义1:.

定义2:若,则称互为相反元素,记作,或.

(Ⅰ)若,试写出,以及的值;

(Ⅱ)若,证明:

(Ⅲ)设是小于的正奇数,至少含有两个元素的集合,且对于集合中任意两个不相同的元素,都有,试求集合中元素个数的所有可能值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: + =1(a>b>0)的焦点为F1 , F2 , 离心率为 ,点P为其上动点,且三角形PF1F2的面积最大值为 ,O为坐标原点.
(1)求椭圆C的方程;
(2)若点M,N为C上的两个动点,求常数m,使 =m时,点O到直线MN的距离为定值,求这个定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)= 的定义域为

查看答案和解析>>

同步练习册答案