精英家教网 > 高中数学 > 题目详情

【题目】已知命题在区间上是减函数;

命题q:不等式无解。

若命题“”为真,命题“”为假,求实数m 的取值范围。

【答案】[﹣3,1]

【解析】

如果命题pq为真,命题pq为假,则命题pq一真一假,进而可得实数m的取值范围.

解:fx)=x2+2(m﹣1)x+3的图象是开口朝上,且以直线x=1﹣m为对称轴的抛物线,

若命题pfx)=x2+2(m﹣1)x+3在区间(﹣∞,0)上是减函数为真命题,

1﹣m≥0,即m≤1;

命题q:“不等式x2﹣4x+1﹣m≤0无解”,

则△=16﹣4(1﹣m)<0,即m<﹣3.

如果命题pq为真,命题pq为假,则命题pq一真一假,

p真,q假,则﹣3≤m≤1,

p假,q真,则不存在满足条件的m值,

∴﹣3≤m≤1.

∴实数m的取值范围是[﹣3,1].

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】“龟兔赛跑”讲述了这样的故事:领先的兔子看着慢慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点.用分别表示乌龟和兔子所行的路程,为时间,则与故事情节相吻合的是(  )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年秋季,我省高一年级全面实行新高考政策,为了调查学生对新政策的了解情况,准备从某校高一三个班级抽取10名学生参加调查.已知三个班级学生人数分别为40人,30人,30人.考虑使用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按三个班级依次统一编号为1,2,…,100;使用系统抽样,将学生统一编号为1,2,…,100,并将整个编号依次分为10段.如果抽得的号码有下列四种情况:

①7,17,27,37,47,57,67,77,87,97;②3,9,15,33,43,53,65,75,85,95;

③9,19,29,39,49,59,69,79,89,99,;④2,12,22,32,42,52,62,73,83,96.

关于上述样本的下列结论中,正确的是( )

A. ①③都可能为分层抽样 B. ②④都不能为分层抽样

C. ①④都可能为系统抽样 D. ②③都不能为系统抽样

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆O,直线l

若直线l与圆O交于不同的两点AB,当时,求实数k的值;

P是直线上的动点,过P作圆O的两条切线PCPD,切点分别为CD,试探究:直线CD是否过定点若存在,请求出定点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题函数上单调递减;命题曲线为双曲线.

(Ⅰ)若“”为真命题,求实数的取值范围;

(Ⅱ)若“”为真命题,“”为假命题,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数的单调性;

(2)当m>0时,若对于区间[1,2]上的任意两个实数x1,x2,且x1<x2,都有,成立,求m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(其中为常量,)的图像经过点

1)求的值;

2)当,函数的图像恒在函数图像的上方,求实数的取值范围;

3)是否存在实数,使得函数的定义域为,值域为?若存在,求出的值;若不存在,则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)判断的奇偶性并证明;

2)若,是否存在,使的值域为?若存在,求出此时的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知平行于轴的动直线交抛物线于点,点的焦点.圆心不在轴上的圆与直线轴都相切,设的轨迹为曲线

⑴求曲线的方程;

⑵若直线与曲线相切于点,过且垂直于的直线为,直线分别与轴相交于点.当线段的长度最小时,求的值.

查看答案和解析>>

同步练习册答案