【题目】在如图所示的多面体中,四边形是矩形,梯形为直角梯形,平面平面,且,,.
(1)求证:平面.
(2)求二面角的大小.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系 xOy 中,已知椭圆 C:=1(a>b>0)的离心率为,且过点,点P在第四象限, A为左顶点, B为上顶点, PA交y轴于点C,PB交x轴于点D.
(1) 求椭圆 C 的标准方程;
(2) 求 △PCD 面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列四个命题:
①命题“若,则”的逆否命题;
②“,使得”的否定是:“,均有”;
③命题“”是“”的充分不必要条件;
④:,:,且为真命题.
其中真命题的序号是________.(填写所有真命题的序号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知矩形ABCD,,,AF⊥平面ABC,且.E为线段DC上一点,沿直线AE将△ADE翻折成,M为的中点,则三棱锥体积的最小值是________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】平面直角坐标系中,已知椭圆:的离心率为,且过点.
(1)求椭圆的方程;
(2)设椭圆,为椭圆上一点,过点的直线交椭圆于两点,射线交椭圆于点Q.
(i)若为椭圆上任意一点,求的值;
(ii)若点坐标为,求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某数学小组从医院和气象局获得2018年1月至6月份每月20的昼夜温差,()和患感冒人数(/人)的数据,画出如图的折线图.
(1)建立关于的回归方程(精确到0.01),预测2019年1月至6月份昼夜温差为时患感冒的人数(精确到整数);
(2)求与的相关系数,并说明与的相关性的强弱(若,则认为与具有较强的相关性),
参考数据:,,,,
相关系数:,回归直线方程是,,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《九章算术·均输》中有如下问题:“今有五人分十钱,令上二人所得与下三人等,问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分10钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列,问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,甲所得为( )
A.钱B.钱C.钱D.钱
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com