精英家教网 > 高中数学 > 题目详情

【题目】在如图所示的多面体中,四边形是矩形,梯形为直角梯形,平面平面,且.

1)求证:平面.

2)求二面角的大小.

【答案】1)见解析;(2

【解析】

1)根据面面垂直性质及线面垂直性质,可证明;由所给线段关系,结合勾股定理逆定理,可证明,进而由线面垂直的判定定理证明平面.

2)建立空间直角坐标系,写出各个点的坐标,并求得平面和平面的法向量,由空间向量法求得两个平面夹角的余弦值,结合图形即可求得二面角的大小.

1)证明:∵平面平面ABEG,且

平面

由题意可得

,且

平面.

2)如图所示,建立空间直角坐标系,则.

设平面的法向量是

由(1)可知平面的法向量是

由图可知,二面角为钝二面角,所以二面角的大小为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系 xOy 中,已知椭圆 C1(a>b>0)的离心率为,且过点,点P在第四象限, A为左顶点, B为上顶点, PAy轴于点CPBx轴于点D.

(1) 求椭圆 C 的标准方程;

(2) PCD 面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一副直角三角板(如图1)拼接,将折起,得到三棱锥(如图2).

(1)若分别为的中点,求证: 平面

(2)若平面平面,求证:平面平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列四个命题:

①命题“若,则”的逆否命题;

②“,使得”的否定是:“,均有”;

③命题“”是“”的充分不必要条件;

为真命题.

其中真命题的序号是________.(填写所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知矩形ABCDAF⊥平面ABC,且.E为线段DC上一点,沿直线AE将△ADE翻折成M的中点,则三棱锥体积的最小值是________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面直角坐标系中,已知椭圆:的离心率为,且过点

1)求椭圆的方程;

2)设椭圆为椭圆上一点,过点的直线交椭圆两点,射线交椭圆于点Q

i)若为椭圆上任意一点,求的值;

ii)若点坐标为,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某数学小组从医院和气象局获得20181月至6月份每月20的昼夜温差,()和患感冒人数(/人)的数据,画出如图的折线图.

1)建立关于的回归方程(精确到0.01),预测20191月至6月份昼夜温差为时患感冒的人数(精确到整数);

2)求的相关系数,并说明的相关性的强弱(若,则认为具有较强的相关性),

参考数据:

相关系数:,回归直线方程是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,函数.若函数在区间上有两个零点,则的取值范围是________.若其在区间上至少有一个零点,则的最小值是________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术·均输》中有如下问题:今有五人分十钱,令上二人所得与下三人等,问各得几何.其意思为已知甲、乙、丙、丁、戊五人分10钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列,问五人各得多少钱?是古代的一种重量单位).这个问题中,甲所得为(

A.B.C.D.

查看答案和解析>>

同步练习册答案