精英家教网 > 高中数学 > 题目详情

(07年江西卷理)(12分)

右图是一个直三棱柱(以为底面)被一平面所截得到的几何体,截面为.已知

(1)设点的中点,证明:平面

(2)求二面角的大小;

(3)求此几何体的体积.

解析:解法一:

(1)证明:作,连

因为的中点,

所以

是平行四边形,因此有

平面平面

(2)如图,

作截面,分别交

,连

因为,所以,则平面

又因为

所以,根据三垂线定理知,所以就是所求二面角的平面角.

因为,所以,故

即:所求二面角的大小为

(3)因为,所以

所求几何体体积为

解法二:

(1)如图,以为原点建立空间直角坐标系,

 

,因为的中点,所以

易知,是平面的一个法向量.

因为平面,所以平面

(2)

是平面的一个法向量,则

得:

显然,为平面的一个法向量.

,结合图形可知所求二面角为锐角.

所以二面角的大小是

(3)同解法一.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(07年江西卷理)(12分)

设动点到点的距离分别为,且存在常数,使得

(1)证明:动点的轨迹为双曲线,并求出的方程;

(2)过点作直线双曲线的右支于两点,试确定的范围,使,其中点为坐标原点.

查看答案和解析>>

同步练习册答案