精英家教网 > 高中数学 > 题目详情
13.已知向量$\overrightarrow{a}$=(2x+1,3),$\overrightarrow{b}$=(2,2-x),若$\overrightarrow{a}$⊥$\overrightarrow{b}$,则实数x的值等于-8.

分析 利用垂直向量的数量积为0的性质求解.

解答 解:∵向量$\overrightarrow{a}$=(2x+1,3),$\overrightarrow{b}$=(2,2-x),a⊥b,
∴$\overrightarrow{a}•\overrightarrow{b}$=2(2x+1)+3(2-x)=0,
解得x=-8.
故答案为:-8.

点评 本题考查实数值的求法,是基础题,解题时要认真审题,注意向量垂直的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.如图,在平面直角坐标系xOy中,椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)过点M(1,$\frac{\sqrt{2}}{2}$),离心率e=$\frac{\sqrt{2}}{2}$,F1、F2为椭圆的左、右焦点.
(1)求椭圆C的标准方程;
(2)设圆T的圆心T(0,t)在x轴上方,且圆T经过椭圆C两焦点.点P为椭圆C上的一动点,PQ与圆T相切于点Q.
①当Q(-$\frac{1}{2}$,-$\frac{1}{2}$)时,求直线PQ的方程;
②当PQ取得最大值为$\frac{\sqrt{5}}{2}$时,求圆T方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若函数$f(x)=\left\{\begin{array}{l}sinx+\frac{3}{2},x≥0\\{x^2}+a,x<0\end{array}\right.$(其中a∈R)的值域为$[\frac{1}{2},+∞)$,则a的取值范围是(  )
A.$[\frac{3}{2},+∞)$B.$[\frac{1}{2},\frac{3}{2}]$C.$[\frac{1}{2},\frac{5}{2}]$D.$[\frac{1}{2},+∞)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.“lgx>lgy”是“$\sqrt{x}$>$\sqrt{y}$”的(  )
A.充分不必要B.必要不充分
C.充要条件D.既不充分也不必要

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,椭圆C1:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>0,b>0)和圆C2:x2+y2=b2,已知圆C2将椭圆C1的长轴三等分,且圆C2的面积为π,椭圆C1的下顶点为E,过坐标原点O且与坐标轴不重合的任意直线l与圆C2相交于点A、B,直线EA、EB与椭圆C1的另一个交点分别是点P、M.
(1)求椭圆C1的方程;
(2)求△EPM面积最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知x、y为正实数,且2x+y=1,则$\frac{y}{x}+\frac{1}{y}$的最小值为$2\sqrt{2}+1$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知p:x2-8x-20>0,q:(x-1-m)(x-1+m)>0 (m>0),若p是q的充分不必要条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知i为虚数单位,则|$\frac{2+4i}{1+\sqrt{3}i}$|=(  )
A.$\frac{\sqrt{5}}{2}$B.$\sqrt{5}$C.2$\sqrt{5}$D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.f(x)的定义域为R,且$f(x)=\left\{\begin{array}{l}{2^{-x}}-1\;\;\;\;\;x≤0\\ f(x-2)\;\;x>0\end{array}\right.$.若方程$f(x)=\frac{3}{2}x+a$的两个不同实根,则a的取值范围为(  )
A.(-∞,3)B.(-∞,3]C.(0,3)D.(-∞,+∞)

查看答案和解析>>

同步练习册答案