精英家教网 > 高中数学 > 题目详情

设a为实数,函数f(x)=x2+|x-a|+1,x∈R.
(Ⅰ)若f(x)是偶函数,试求a的值;
(Ⅱ)求证:无论a取任何实数,函数f(x)都不可能是奇函数.

解:(Ⅰ)∵f(x)是偶函数,∴f(-x)=f(x)在R上恒成立,
即(-x)2+|-x-a|+1=x2+|x-a|+1,
化简整理,得ax=0在R上恒成立,(3分)
∴a=0.(5分)
(Ⅱ)证明:用反证法.假设存在实数a,使函数f(x)是奇函数,
则f(-x)=-f(x)在R上恒成立,∴f(0)=-f(0),∴f(0)=0,
但无论a取何实数,f(0)=|a|+1>0,与f(0)=0矛盾.
矛盾说明,假设是错误的,所以无论a取任何实数,函数f(x)不可能是奇函数.
分析:(I)根据偶函数的定义建立恒等式f(-x)=f(x)在R上恒成立,从而求出a的值即可;
(II)利用反证法进行证明,先假设存在实数a,使函数f(x)是奇函数,则f(-x)=-f(x)在R上恒成立,求出f(0)=0,但无论a取何实数,f(0)=|a|+1>0,与f(0)=0矛盾.从而矛盾说明,假设是错误的,最后肯定结论.
点评:本题主要考查了函数奇偶性的应用,以及反证法的思想,同时考查了计算的能力,属于综合题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设a为实数,函数f(x)=x3-ax2+(a2-1)x在(-∞,0)和(1,+∞)都是增函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a为实数,函数f(x)=x2-|x-a|+1,x∈R.
(1)若f(x)是偶函数,试求a的值;
(2)在(1)的条件下,求f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a为实数,函数f(x)=2x2+(x-a)|x-a|
(1)求f(a+1);
(2)若a=3,用分段函数的形式表示f(x),并求出f(x)的最小值;
(3)求f(x)的最小值g(a).

查看答案和解析>>

科目:高中数学 来源: 题型:

设a为实数,函数f(x)=ex-2x+2a,x∈R.求f(x)的单调区间与极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a为实数,函数f(x)=x3+ax2+(a-2)x的导函数是f'(x)是偶函数,则曲线y=f(x)在原点处的切线方程为
y=-2x
y=-2x

查看答案和解析>>

同步练习册答案