精英家教网 > 高中数学 > 题目详情

【题目】设抛物线的方程为,其中常数F是抛物线的焦点.

1)设A是点F关于顶点O的对称点,P是抛物线上的动点,求的最大值;

2)设是两条互相垂直,且均经过点F的直线,与抛物线交于点AB与抛物线交于点CD,若点G满足,求点G的轨迹方程.

【答案】(1)最大值为;(2)

【解析】

1)求得A的坐标,设出过A的直线为ykx),ktanα,联立抛物线方程,运用判别式为0,求得倾斜角,可得所求最大值;

2)求得F10),设Ax1y1),Bx2y2),Cx3y3),Dx4y4),Gxy),设l1ykx1),联立抛物线方程,运用韦达定理,以及两直线垂直的条件:斜率之积为﹣1,结合向量的坐标表示,以及消元,可得所求轨迹方程.

1A是点关于顶点O的对称点,可得

设过A的直线为

联立抛物线方程可得

由直线和抛物线相切可得,解得

可取,可得切线的倾斜角为45°,

由抛物线的定义可得,而的最小值为45°,

的最大值为

2)由,可得,设

,联立抛物线,可得

即有

由两直线垂直的条件,可将k换为,可得

G满足,可得

即为

可得,则G的轨迹方程为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】高尔顿(钉)板是在一块竖起的木板上钉上一排排互相平行、水平间隔相等的圆柱形铁钉(如图),并且每一排钉子数目都比上一排多一个,一排中各个钉子恰好对准上面一排两相邻铁钉的正中央.从入口处放入一个直径略小于两颗钉子间隔的小球,当小球从两钉之间的间隙下落时,由于碰到下一排铁钉,它将以相等的可能性向左或向右落下,接着小球再通过两铁钉的间隙,又碰到下一排铁钉.如此继续下去,在最底层的5个出口处各放置一个容器接住小球.

(Ⅰ)理论上,小球落入4号容器的概率是多少?

(Ⅱ)一数学兴趣小组取3个小球进行试验,设其中落入4号容器的小球个数为,求的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆以原点为中心,左焦点的坐标是,长轴长是短轴长的倍,直线与椭圆交于点,且都在轴上方,满足

1)求椭圆的标准方程;

2)对于动直线,是否存在一个定点,无论如何变化,直线总经过此定点?若存在,求出该定点的坐标;若不存在,请说明理由;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知抛物线E:y2=4x与圆M:(x3)2+y2=r2(r>0)相交于A,B,C,D四个点.

(1)r的取值范围;

(2)设四边形ABCD的面积为S,S最大时,求直线AD与直线BC的交点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的右顶点为A,上顶点为B.已知椭圆的离心率为

(1)求椭圆的方程;

(2)设直线与椭圆交于两点,与直线交于点M,且点P,M均在第四象限.若的面积是面积的2倍,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,曲线为参数).以原点为极点,轴的正半轴为极轴建立极坐标系,曲线.

(1)求的普通方程和的直角坐标方程;

(2)若曲线交于两点,的中点为,点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】十二生肖,又称十二属相,中国古人拿十二种动物来配十二地支,组成子鼠、丑牛、寅虎、卯兔、辰龙、巳蛇、午马、未羊、申猴、酉鸡、戌狗、亥猪十二属相。现有十二生肖吉祥物各一件,甲、乙、丙三位同学一次随机抽取一件作为礼物,甲同学喜欢马、牛,乙同学喜欢马、龙、狗,丙同学除了鼠不喜欢外其他的都喜欢,则这三位同学抽取的礼物都喜欢的概率是( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,求函数处的切线方程;

2)当时,证明:函数只有一个零点;

3)若函数的极大值等于,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数,如果存在实数使得,那么称的线性函数.

1)下面给出两组函数,判断是否分别为的线性函数?并说明理由;

第一组:

第二组:

2)设,线性函数为.若等式上有解,求实数的取值范围;

3)设,取.线性函数图像的最低点为.若对于任意正实数.试问是否存在最大的常数,使恒成立?如果存在,求出这个的值;如果不存在,请说明理由.

查看答案和解析>>

同步练习册答案