【题目】在已知空间四边形ABCD中,E、F分别是棱AB、CD的中点,若2EF=BC,且异面直线EF与BC所成的角为60°,则AD与BC所成的角是
【答案】60°
【解析】解:取AC中点G,连结EF、EG、GF,
∵空间四边形ABCD中,E、F分别是棱AB、CD的中点,若2EF=BC,且异面直线EF与BC所成的角为60°,
∴EG∥BC,且EG= ,∴∠GEF=60°,EG=EF,GF∥AD,
∴∠EGF是AD与BC所成的角(或所成角的补角),
△EFG中,∵∠GEF=60°,EG=EF,
∴∠EGF=60°.
∴AD与BC所成的角是60°.
所以答案是:60°.
【考点精析】通过灵活运用异面直线及其所成的角,掌握异面直线所成角的求法:1、平移法:在异面直线中的一条直线中选择一特殊点,作另一条的平行线;2、补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,其目的在于容易发现两条异面直线间的关系即可以解答此题.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x+ +lnx,a∈R. (Ⅰ)若f(x)在x=1处取得极值,求a的值;
(Ⅱ)若f(x)在区间(1,2)上单调递增,求a的取值范围;
(Ⅲ)讨论函数g(x)=f'(x)﹣x的零点个数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱中, 平面, , , 是的中点, 是等腰三角形, 是的中点, 是上一点.
(Ⅰ)若,证明: 平面;
(Ⅱ)求直线与平面所成角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在Rt△AOB中, ,斜边AB=4,D是AB中点,现将Rt△AOB以直角边AO为轴旋转一周得到一个圆锥,点C为圆锥底面圆周上一点,且∠BOC=90°,
(1)求圆锥的侧面积;
(2)求直线CD与平面BOC所成的角的大小;(用反三角函数表示)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】抛物线y2=4x的准线与x轴交于A点,焦点是F,P是位于x轴上方的抛物线上的任意一点,令m= ,当m取得最小值时,PA的斜率是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆,过点作圆的切线,切点分别为.直线恰好经过的右顶点和上顶点.
(1)求椭圆的方程;
(2)如图,过椭圆的右焦点作两条互相垂直的弦, .
①设中点分别为,证明:直线必过定点,并求此定点坐标;
②若直线, 的斜率均存在时,求由四点构成的四边形面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为办好省运会,计划招募各类志愿者1.2万人.为做好宣传工作,招募小组对15-40岁的人群随机抽取了100人,回答“省运会”的有关知识,根据统计结果制作了如下的统计图表1、表2:
(I)分别求出表2中的a、x的值;
(II)若在第2、3、4组回答完全正确的人中,用分层抽样的方法抽取6人,则各组应分别抽取多少人?
(III)在(II)的前提下,招募小组决定在所抽取的6人中,随机抽取2人颁发幸运奖,求获奖的2人均来自第3组的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com