精英家教网 > 高中数学 > 题目详情

如图,边长为4的正方形ABCD与矩形ABEF所在平面互相垂直,M,N分别为AE,BC的中点,AF=3.

(I)求证:DA⊥平面ABEF;
(Ⅱ)求证:MN∥平面CDFE;
(Ⅲ)在线段FE上是否存在一点P,使得AP⊥MN? 若存在,求出FP的长;若不存在,请说明理由.

(I)详见解析;(Ⅱ)详见解析;(Ⅲ)存在,

解析试题分析:(I)由面面垂直的性质定理可直接证得。(Ⅱ)将转化为的中点,利用中位线证,再根据线面平行的判定定理即可证MN∥平面CDFE。(Ⅲ)假设存在点P使AP⊥MN,由(I)易得所以。(Ⅲ)由逆向思维可知只需证得,因为,即可证得AP⊥MN。由相似三角形的相似比即可求得FP。
试题解析:(I)因为为正方形,所以
因为平面, ,,所以.
(Ⅱ)连结

因为的中点,且为矩形,所以也是的中点。因为的中点,所以,因为,所以MN∥平面CDFE。
(Ⅲ)过点交线段于点,则点即为所求。因为ABCD为正方形,所以。因为,所以,因为,所以。因为,且,所以,因为,所以。因为相似,所以,因为,所以
考点:线线平行、线面平行、线线垂直、线面垂直。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知为直角梯形,,平面
(1)求证:平面;
(2)求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

棱长为2的正方体中,E为的中点.

(1)求证:
(2)求异面直线AE与所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在空间直角坐标系O-xyz中,正四棱锥P-ABCD的侧棱长与底边长都为,点M,N分别在PA,BD上,且

(1)求证:MN⊥AD;
(2)求MN与平面PAD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱锥中,点分别是棱的中点.

(1)求证://平面
(2)若平面平面,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,菱形ABCD中,平面ABCD,平面ABCD,

(1)求证:平面BDE;
(2)求锐二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知为不在同一直线上的三点,且.

(1)求证:平面//平面
(2)若平面,且,求证:平面
(3)在(2)的条件下,设点上的动点,求当取得最小值时的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,正△ABC的边长为4,CD是AB边上的高,E,F分别是AC和BC边的中点,现将△ABC沿CD翻折成直二面角A-DC-B.

(1)试判断直线AB与平面DEF的位置关系,并说明理由;
(2)求棱锥E-DFC的体积;
(3)在线段BC上是否存在一点P,使AP⊥DE?如果存在,求出的值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在如图的几何体中,平面为正方形,平面为等腰梯形,.

(1)求证:平面
(2)求直线与平面所成角的正弦值.

查看答案和解析>>

同步练习册答案