【题目】已知△ABC的三个顶点坐标分别为A(﹣1,1),B(7,﹣1),C(﹣2,5),AB边上的中线所在直线为l.
(1)求直线l的方程;
(2)若点A关于直线l的对称点为D,求△BCD的面积.
科目:高中数学 来源: 题型:
【题目】求满足下列条件的直线方程:
(1)求经过直线l1:x+3y﹣3=0和l2:x﹣y+1=0的交点,且平行于直线2x+y﹣3=0的直线l的方程;
(2)已知直线l1:2x+y﹣6=0和点A(1,﹣1),过点A作直线l与l1相交于点B,且|AB|=5,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,从2009年参加奥运知识竞赛的学生中抽出60名,将其成绩(均为整数)整理后画出的频率分布直方图如图所示.观察图形,估计这次奥运知识竞赛的及格率(大于或等于60分为及格)为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合为集合的个非空子集,这个集合满足:①从中任取个集合都有 成立;②从中任取个集合都有 成立.
(Ⅰ)若, , ,写出满足题意的一组集合;
(Ⅱ)若, ,写出满足题意的一组集合以及集合;
(Ⅲ) 若, ,求集合中的元素个数的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}满足an+1= an2﹣ nan+1(n∈N*),且a1=3.
(1)计算a2 , a3 , a4的值,由此猜想数列{an}的通项公式,并给出证明;
(2)求证:当n≥2时,ann≥4nn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱中,平面平面,四边形为菱形,点是棱上不同于, 的点,平面与棱交于点, , , .
(Ⅰ)求证: ∥平面;
(Ⅱ)求证: 平面;
(Ⅲ)若二面角为,求的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数为常数
(1)当在处取得极值时,若关于x的方程 在上恰有两个不相等的实数根,求实数b的取值范围.
(2)若对任意的,总存在,使不等式 成立,求实数 的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义在R上函数f(x),且f(x)+f(﹣x)=0,当x<0时,f(x)=( )x﹣8×( )x﹣1
(1)求f(x)的解析式;
(2)当x∈[1,3]时,求f(x)的最大值和最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,角A,B,C的对边分别为a,b,c,且三角形的面积为S= bccosA.
(1)求角A的大小;
(2)若c=8,点D在AC边上,且CD=2,cos∠ADB=﹣ ,求a的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com