精英家教网 > 高中数学 > 题目详情
18.已知点D是△ABC内一定点,且有∠DAC=∠DCB=∠DBA=30°,求证:△ABC是等边三角形.

分析 由已知推导出△ABC不一定是等边三角形.法一:举出反例;法二:以C为原点,CD为x轴建立直角坐标系,设D(1,0),B($\frac{\sqrt{3}a}{2}$,$\frac{a}{2}$),A(x,y),推导出当BC=a=$\sqrt{3}$时命题成立.可见,此命题是假命题.

解答 证明:△ABC不一定是等边三角形.
证法一:如图所示的三角角存在,但它不是等边三角形,故△ABC不一定是等边三角形.
证法二:以C为原点,CD为x轴建立直角坐标系,设D(1,0),B($\frac{\sqrt{3}a}{2}$,$\frac{a}{2}$),A(x,y),
则BD斜率k1=$\frac{\frac{a}{2}}{\frac{\sqrt{3}}{2}a-1}$=$\frac{a}{\sqrt{3}a-2}$,AB斜率k2=$\frac{a-2y}{\sqrt{3}a-2x}$,
AC斜率k3=$\frac{y}{x}$,AD斜率k4=$\frac{y}{x-1}$,
其中a>$\frac{2}{\sqrt{3}}$,x>0>y,
由∠DAC=∠DBA=30°及到角公式得:
$\frac{{k}_{2}-{k}_{1}}{1+{k}_{2}{k}_{1}}$=$\frac{\frac{a-2y}{\sqrt{3}a-2x}-\frac{a}{\sqrt{3}a-2}}{1+\frac{a-2y}{\sqrt{3}a-2x}•\frac{a}{\sqrt{3}a-2}}$=$\frac{1}{\sqrt{3}}$.
∴$\sqrt{3}$[(a-2y)($\sqrt{3}$a3-2)-a($\sqrt{3}$a-2x)]=($\sqrt{3}$a-2)($\sqrt{3}$a-2x)+a(a-2y),
$\sqrt{3}$[-2a+(4-2$\sqrt{3}$a)y+2ax]=4a2-2$\sqrt{3}$a+(4-2$\sqrt{3}$a)x-2ay,
(4$\sqrt{3}$-6a)y+2$\sqrt{3}$ax=4a2+(4-2$\sqrt{3}$a)x-2ay,
(4$\sqrt{3}$-4a)y=(4-4a$\sqrt{3}$)x+4a2
y=$\frac{(1-\sqrt{3}a)x+{a}^{2}}{\sqrt{3}-a}$,①
$\frac{{k}_{3}-{k}_{4}}{1+{k}_{3}{k}_{4}}$=$\frac{\frac{y}{x}-\frac{y}{x-1}}{1+\frac{{y}^{2}}{{x}^{2}-x}}$=$\frac{1}{\sqrt{3}}$,
x2-x+y2+$\sqrt{3}$y=0,②
由①、②解出x,y.
把①代入②,x2-x+$\frac{(1-\sqrt{3}a)x+{a}^{2}}{\sqrt{3}-a}$•[$\frac{(1-\sqrt{3}a)x+{a}^{2}}{\sqrt{3}-a}$+$\sqrt{3}$]=0,
(x2-x)($\sqrt{3}$-a)2+[(1-$\sqrt{3}$a)x+a2][(1-$\sqrt{3}$a)x+a2+3-$\sqrt{3}$a]=0,
(x2-x)(3-2$\sqrt{3}$a+a2)+(1-$\sqrt{3}$a)2x2+(1-$\sqrt{3}$a)(2a2-$\sqrt{3}$a+3)x+a4-$\sqrt{3}$3a3+3a2=0,
(4a2-4$\sqrt{3}$a+4)x2+(-2$\sqrt{3}$a3+4a2-2$\sqrt{3}$a)x+a4-$\sqrt{3}$a3+3a2=0,③
若△ABC是等边三角形,则③的根是$\frac{\sqrt{3}a}{2}$,
把x=$\frac{\sqrt{3}a}{2}$代入③,得
3a4-3$\sqrt{3}$a3+3a2-3a4+2$\sqrt{3}$a3-3a2+a4-$\sqrt{3}$a3+3a2
=a4-2$\sqrt{3}$a3+3a2=a2(a-$\sqrt{3}$)2=0,
仅当BC=a=$\sqrt{3}$时命题成立.可见,此命题是假命题.
故△ABC不一定是等边三角形.

点评 本题考查等边三角形的证明,在判断一个命题是假命题时,举出一个反例即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知变量x、t满足约束条件$\left\{\begin{array}{l}{x+2y≥2}\\{2x+y≤4}\\{4x-y≥-1}\end{array}\right.$,则目标函数z=3x-y的最大值是(  )
A.-4B.-$\frac{3}{2}$C.-1D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知四棱锥P-ABCD的底面为直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且$PA=AD=DC=\frac{1}{2}$,AB=1,M是PB的中点.
(1)求AC与PB所成的角的余弦值;
(2)求PC与平面AMC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若以F1(-$\sqrt{3}$,0),F2($\sqrt{3}$,0)为焦点的双曲线过点(2,1),则该双曲线的标准方程为$\frac{{x}^{2}}{2}-{y}^{2}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,已知:C是以AB为直径的半圆O上一点,CH⊥AB于点H,直线AC与过B点的切线相交于点D,F为BD中点,连接AF交CH于点E,
(Ⅰ)求证:∠BCF=∠CAB;
(Ⅱ)若FB=FE=1,求⊙O的半径.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图,在三棱柱ABC-A1B1C1中,各棱长均相等,且∠A1AB=∠A1AC=∠BAC=60°,则AB1与底面ABC所成角的正弦值为(  )
A.$\frac{1}{3}$B.$\frac{\sqrt{2}}{3}$C.$\frac{\sqrt{2}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.${∫}_{-1}^{1}$(1-sin5x+xcos2x+$\sqrt{1-{x}^{2}}$)dx=2+$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.函数f(x)=$\frac{1}{\sqrt{2x}}$的导数f′(x)等于-$\frac{\sqrt{2}}{4\sqrt{{x}^{3}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若a2x=8,则$\frac{{a}^{3x}+{a}^{-3x}}{{a}^{x}+{a}^{-x}}$的值等于$\frac{57}{8}$.

查看答案和解析>>

同步练习册答案