精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,底面是以O为中心的菱形,底面ABCDMBC上一点.

BM等于多少时,平面POM

在满足的条件下,若,求四棱锥的体积.

【答案】(1)见解析;(2).

【解析】

O点作BC的垂线,垂足为M,由菱形ABCD中的边角关系可得BM的长,连接PM,证明,进而可得平面;

,利用余弦定理求出再根据垂直由勾股定理列方程可得然后由求解四棱锥的体积即可.

证明:由于ABCD是以O为中心的菱形,,所以是等边三角形,

O点作BC的垂线,垂足为M,连接PM

,所以

平面ABCD平面ABCD

所以,因为

所以平面POM

解:由知:,底面ABCD是以O为中心的菱形,

,则

中由余弦定理可得

,即,即

解得

故四棱锥的体积

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知满足为常数),若最大值为3,则=( )

A. 2 B. 1 C. 4 D. 3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四边形ABCD中,| |=4, =12,E为AC的中点.

(1)若cos∠ABC= ,求△ABC的面积SABC
(2)若 =2 ,求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工艺品厂要生产如图所示的一种工艺品,该工艺品由一个实心圆柱体和一个实心半球体组成,要求半球的半径和圆柱的底面半径之比为,工艺品的体积为。现设圆柱的底面半径为,工艺品的表面积为,半球与圆柱的接触面积忽略不计。

(1)试写出关于的函数关系式并求出的取值范围;

(2)怎样设计才能使工艺品的表面积最小?并求出最小值。

参考公式:球体积公式:;球表面积公式:,其中为球半径.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数处取得极大值或极小值,则称为函数的极值点.

设函数

(1)若有两个极值点且满足的值及的取值范围;

(2)若处的切线与的图象有且只有一个公共点,求的值;

(3),且对满足“函数的图象总有三个交点”的任意实数,都有成立,求满足的条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在区间[﹣3,3]上的单调函数f(x)满足:对任意的x∈[﹣3,3],都有f(f(x)﹣2x)=6,则在[﹣3,3]上随机取一个实数x,使得f(x)的值不小于4的概率为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在等腰梯形ABCD中,AD∥BC,AD=CD=AB,∠ABC=60°,将三角形ABD沿BD折起,使点A在平面BCD上的投影G落在BD上.
(1)求证:平面ACD⊥平面ABD;
(2)求二面角G﹣AC﹣D的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx,g(x)= x2﹣bx(b为常数).
(1)函数f(x)的图象在点(1,f(1))处的切线与函数g(x)的图象相切,求实数b的值;
(2)若函数h(x)=f(x)+g(x)在定义域上存在单调减区间,求实数b的取值范围;
(3)若b≥2,x1 , x2∈[1,2],且x1≠x2 , 都有|f(x1)﹣f(x2)|>|g(x1)﹣g(x2)|成立,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的一个顶点为,焦点在轴上,离心率为

(1)求椭圆的方程;

(2)若椭圆与直线相交于不同的两点,当时,求实数的取值范围.

查看答案和解析>>

同步练习册答案