精英家教网 > 高中数学 > 题目详情
6.已知点P(x,y)满足条件:$\left\{\begin{array}{l}x≥0\\ x-y≥0\\ 2x+y-k≤0\end{array}\right.$,若z=x+3y的最大值为8,则k的值为(  )
A.-6B.6C.8D.不确定

分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求出最优解的坐标,代入目标函数得答案.

解答 解:由约束条件:$\left\{\begin{array}{l}x≥0\\ x-y≥0\\ 2x+y-k≤0\end{array}\right.$作出可行域如图,联立$\left\{\begin{array}{l}{x-y=0}\\{2x+y-k=0}\end{array}\right.$,解得A($\frac{k}{3}$,$\frac{k}{3}$),
化目标函数z=x+3y为y=-$\frac{x}{3}$+$\frac{z}{3}$,
由图可知,当直线y=-$\frac{x}{3}$+$\frac{z}{3}$,过A($\frac{k}{3}$,$\frac{k}{3}$),
时,直线在y轴上的截距最大,z有最大值为
$\frac{k}{3}+k$=8,
解得k=6.
故选:B.

点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.直线$\sqrt{3}$x-ysinθ+2=0的倾斜角的取值范围是[$\frac{π}{3}$,$\frac{2π}{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.“函数f(x)=logax(a>0,a≠1)在其定义域内是减函数”是“loga2<0”的充要条件(填“充分不必要”“必要不充分”“充要不充分”“充要”“既不充分也不必要”).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在厄尔尼诺现象中,经观测,某昆虫的产卵数y与温度x有关,现将收集到的温度xi和产卵数yi(i=1,2,…,7)的7组观测数据作了初步处理,得到如图的散点图及一些统计量表.
$\overline{x}$$\overline{y}$$\overline{z}$$\sum_{i=1}^{7}$(xi-$\overline{x}$)2$\sum_{i=1}^{7}$(xi-$\overline{x}$)(yi-$\overline{y}$)$\sum_{i=1}^{7}$(xi-$\overline{x}$)(zi-$\overline{z}$)
27.481.313.61482935.1340
表中zi=lnyi,$\overline{z}$=$\frac{1}{7}$$\sum_{i=1}^{7}$zi
(1)根据散点图判断,y=a+bx与y=c1e${\;}^{{c}_{2}x}$哪一个适宜作为y与x之间的回归方程模型?(给出判断即可,不必说明理由)
(2)根据(1)的判断结果及表中数据.
①试求y关于x回归方程;
②已知用人工培养该昆虫的成本h(x)与温度x和产卵数y的关系为h(x)=x(lny-9.43)+175,当温度x为何值时,培养成本的预报值最小?
附:对于一组数据(u1,v1),(u2,v2),…(un,vn),其回归直线v=α+βu的斜率和截距的最小二乘估计分别为β=$\frac{\sum_{i=1}^{n}({u}_{i}-\overline{u})({v}_{i}-\overline{v})}{\sum_{i=1}^{n}({u}_{i}-\overline{u})^{2}}$,α=$\overline{v}$-β$\overline{u}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设f(x)=-$\frac{1}{3}$x3+$\frac{1}{2}$x2+2ax.
(1)当a=1时,求f(x)在[1,4]上的最大值和最小值.
(2)若f (x)在($\frac{2}{3}$,+∞)上存在单调递增区间,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数f(x)=|tanx|的周期为(  )
A.B.πC.$\frac{π}{2}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设f(x)=sin(x+$\frac{5π}{2}$)cos(x-$\frac{π}{2}$)-cos2(x+$\frac{π}{4}}$).
(1)求f(x)的单调区间;
(2)在锐角△ABC中,角A,B,C的对边分别为a,b,c,若f($\frac{A}{2}}$)=$\frac{{\sqrt{3}-1}}{2}$,a=1,求△ABC周长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知二次函数f(x)=ax2+bx+c.
(1)若f(-1)=0,试判断函数f(x)的零点个数;
(2)是否存在实数a,b,c,使得f(x)同时满足以下条件:
①对?x∈R,f(x-2)=f(-x);
②对?x∈R,0≤f(x)-x≤$\frac{1}{2}$(x-1)2?如果存在,求出a,b,c的值,如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在平面直角坐标系xOy中,已知直线l过点P($\sqrt{3}$,2),斜倾角为60°,以原点O为极点,x轴的非负半轴为极轴,取相同的单位长度建立极坐标系,曲线C的极坐标方程为ρ2=$\frac{4}{1+si{n}^{2}θ}$.
(1)求曲线C的直角坐标方程;
(2)设直线l与曲线C交于A、B两点,求|PA|•|PB|的值.

查看答案和解析>>

同步练习册答案