精英家教网 > 高中数学 > 题目详情

如图,将平面直角坐标系的格点(横、纵坐标均为整数的点)按如下规则标上数字标签:原点处标数字0,点(1,0)处标数字1,点(1,-1)处标数字2,点(0,-1)处标数字3,点(-1,-1)处标数字4,点(-1,0)处标数字5,点(-1,1)处标数字6,点(0,1)处标数字7,…以此类推,①标数字50的格点的坐标为________.②记格点坐标为(m,n)的点(m、n均为正整数)处所标的数字为f(m,n),若n>m,则f(m,n)=________.

(4,2)    (2n+1)2+m-n-1,(n>m)
分析:由图形,格点的连线呈周期性过横轴,研究每一周的格点数及每一行每一列格点数的变化,得出规律即可
解答:从横轴上的点开始点开始计数,从1开始计数第一周共9个格点,除了四个顶点外每一行第一列各有一个格点,外加一个延伸点
第二周从10开始计,除了四个顶点的四个格点外,每一行每一列有三个格点,外加一个延伸点共17个,
拐弯向下到达横轴前的格点补开始点的上面以补足起始点所在列的个数,
由此其规律是后一周是前一周的格点数加上8×(周数-1)
令周数为t,各周的点数和为St=9+8(t-1)=8t+1,每一行(或列)除了端点外的点数与周数的关系是b=2t-1
由于S1=9,S2=17,S3=25,S4=33,
①由于9+17+25=51,第50个格点应在第三周的倒数第二个点上,故其坐标为(4,2)
②f(1,0)=12,f(2,1)=32,f(3,2)=52,…,f(n+1,n)=(2n+1)2.∵n>m,∴n≥m-1,∴当n>m时,f(m,n)=(2n+1)2+m-n-1.
故答案为(4,2),2n+1)2+m-n-1,(n>m)
点评:本题考查归纳推理,归纳推理是由特殊到一般的推理,求解本题的关键是从特殊数据下手,找出规律,总结出所要的表达式,如本题的第二个填空.归纳在现实生活在有着十分广泛的运用,应好好把握其推理模式.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•泉州模拟)将边长为1的正三角形ABC按如图所示的方式放置,其中顶点A与坐标原点重合.记边AB所在直线的倾斜角为θ,已知θ∈[0,
π
3
]

(Ⅰ)试用θ表示
BC
的坐标(要求将结果化简为形如(cosα,sinα)的形式);
(Ⅱ)定义:对于直角坐标平面内的任意两点P(x1,y1)、Q(x2,y2),称|x1-x2|+|y1-y2|为P、Q两点间的“taxi距离”,并用符号|PQ|表示.试求|BC|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

将边长为1的正三角形ABC按如图所示的方式放置,其中顶点A与坐标原点重合.记边AB所在直线的倾斜角为θ,已知数学公式
(Ⅰ)试用θ表示数学公式的坐标(要求将结果化简为形如(cosα,sinα)的形式);
(Ⅱ)定义:对于直角坐标平面内的任意两点P(x1,y1)、Q(x2,y2),称|x1-x2|+|y1-y2|为P、Q两点间的“taxi距离”,并用符号|PQ|表示.试求|BC|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

将边长为1的正三角形按如图所示的方式放置,其中顶点与坐标原点重合.记边所在直线的倾斜角为,已知

       (Ⅰ)试用表示的坐标(要求将结果化简为形如的形式);

       (Ⅱ)定义:对于直角坐标平面内的任意两点,称两点间的“taxi距离” ,并用符号表示.试求的最大值.

 


查看答案和解析>>

科目:高中数学 来源: 题型:

将边长为1的正三角形按如图所示的方式放置,其中顶点与坐标原点重合.记边所在直线的倾斜角为,已知

       (Ⅰ)试用表示的坐标(要求将结果化简为形如的形式);

       (Ⅱ)定义:对于直角坐标平面内的任意两点,称两点间的“taxi距离” ,并用符号表示.试求的最大值.

 


查看答案和解析>>

科目:高中数学 来源: 题型:

(选修4-4:坐标系与参数方程) (本小题满分10分)

在直角坐标系xoy中,直线的参数方程为(t为参数),在极坐标系(与直角坐标系xoy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为.

(Ⅰ)求圆C的直角坐标方程;

(Ⅱ)设圆C与直线交于点A、B,若点P的坐标为,求|PA|+|PB|.

23(本小题满分10分)

 已知三棱锥P-ABC中,PA⊥平面ABC,AB⊥AC,,N为AB上一点,AB=4AN, M、S分别为PB,BC的中点.以A为原点,射线AB,AC,AP分别为x,y,z轴正向建立如图空间直角坐标系.

(Ⅰ)证明:CM⊥SN;

(Ⅱ)求SN与平面CMN所成角的大小.

24.(本小题满分10分)

将一枚硬币连续抛掷次,每次抛掷互不影响. 记正面向上的次数为奇数的概率为,正面向上的次数为偶数的概率为.

 (Ⅰ)若该硬币均匀,试求

 (Ⅱ)若该硬币有暇疵,且每次正面向上的概率为,试比较的大小.

查看答案和解析>>

同步练习册答案