精英家教网 > 高中数学 > 题目详情

【题目】已知函数a为正常数),且函数的图象与y轴的交点重合.

1)求a实数的值

2)若b为常数)试讨论函数的奇偶性;

3)若关于x的不等式有解,求实数a的取值范围.

【答案】1;(2)见解析;(3

【解析】

1)由题意得:,即,可得.

2)利用奇偶函数的定义,确定b的值,进而可得函数的奇偶性.

3)关于x的不等式有解转化为的最大值大于或等于a,计算可得答案.

1)由题意得:,即,又∵,∴.

2)由(1)可知,

为偶函数,即,则有,此时

,即不为奇函数;

为奇函数,即,则,此时

,即不为偶函数;

综上所述:

当且仅当时,函数为偶函数,且不为奇函数,

当且仅当时,函数为奇函数,且不为偶函数,

时,函数既非奇函数又非偶函数.

3)关于x的不等式有解,即x的不等式有解

,当时等号成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】国家放开二胎政策后,不少家庭开始生育二胎,随机调查110名性别不同且为独生子女的高中生,其中同意生二胎的高中生占随机调查人数的,统计情况如下表:

同意

不同意

合计

男生

20

女生

20

合计

110

(l)求的值

(2)根据以上数据,能否有99%的把握认为同意生二胎与性别有关?请说明理由.

附:

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】( 本小题满分14)

如图,在三棱锥PABC中,PC底面ABCABBCDE分别是ABPB的中点.

(1)求证:DE平面PAC

(2)求证:ABPB

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥EABCD中,底面ABCD是边长为2的正方形,且DE,平面ABCD⊥平面ADE,∠ADE30°

(1)求证:AE⊥平面CDE

(2)求AB与平面BCE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)若,求函数的单调区间;

(2)若,则当时,函数的图象是否总在直线上方?请写出判断过程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义实数ab间的计算法则如下.

1)计算

2)对的任意实数xyz,判断的大小,并说明理由;

3)写出函数的解析式,作出该函数的图象,并写出该函数单调递增区间和值域(只需要写出结果).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ABCa=7,b=8,cosB= –

A

AC边上的高

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学校某研究性学习小组在对学生上课注意力集中情况的调查研究中,发现其在40分钟的一节课中,注意力指数y与听课时间x(单位:分钟)之间的关系满足如图所示的图象,当x∈(0,12]时,图象是二次函数图象的一部分,其中顶点A(10,80),过点B(12,78);当x∈[12,40]时,图象是线段BC,其中C(40,50).根据专家研究,当注意力指数大于62时,学习效果最佳.

(1)试求y=f(x)的函数关系式;

(2)教师在什么时段内安排内核心内容,能使得学生学习效果最佳?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,(为常数),.曲线在点处的切线与轴平行

(1)的值;

(2)的单调区间和最小值;

(3)对任意恒成立,求实数的取值范围

查看答案和解析>>

同步练习册答案