精英家教网 > 高中数学 > 题目详情
13.如图所示,棱柱ABC-A1B1C1的侧面BCC1B1是菱形,设D是A1C1上的点且A1B∥平面B1CD,则A1D:DC1的值为1.

分析 根据题意,结合图形,设BC1交B1C于点E,连接DE,证明DEA1B,得出D为A1C1的中点,即可得出结论.

解答 解:如图所示,

棱柱ABC-A1B1C1中,
设BC1交B1C于点E,连接DE,
则DE是平面A1BC1与平面B1CD的交线,
因为A1B∥平面B1CD,所以A1B∥DE;
又E是BC1的中点,所以D为A1C1的中点,
所以A1D:DC1=1.
故答案为:1.

点评 本题考查了空间中的平行与垂直关系的判断与应用问题,也考查了考查空间想象能力与逻辑思维能力,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.如图所示,在直四棱柱ABCD-A1B1C1D1中,DB=BC,DB⊥AC,点M是棱BB1上的一点.
(1)求证:B1D1∥平面A1BD;
(2)求证:MD⊥AC;
(3)是否存在点M,使得平面DMC1⊥平面CC1D1D?若存在,试确定点M的位置,并给出证明;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.阅读下列算法,并结合它的程序框图:

(1)根据上述自然语言的算法,试完成程序框图中①和②处的空白;
(2)写出程序的功能,并计算出最后的输出结果.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.过原点且倾斜角为60°的直线与圆x2+y2-4y=0相交,则圆的半径为2直线被圆截得的弦长为2$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知等差数列{an}的前n项和为Sn,且a2+a6=14,S5=25.
(1)求an及Sn
(2)数列{bn}中,令b1=1,bn=$\frac{4}{{{a}_{n}}^{2}-1}$ (n≥2,n∈N*),证明:数列{bn}的前n项和Tn<2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列各组中的函数图象相同的是(  )
A.f(x)=1,g(x)=x0B.f(x)=1,g(x)=$\frac{x}{x}$
C.f(x)=$\frac{(x+3)^{2}}{x+3}$,g(x)=(x+3)(x+3)0D.f(x)=|x|,g(x)=$\left\{\begin{array}{l}{x,x>0}\\{-x,x<0}\end{array}\right.$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若α=20°,β=25°,则(1+tanα)(1+tanβ)的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)的定义域为R,若存在常数k>0,使|f(x)|≤$\frac{k}{2015}$|x|对一切实数x均成立,则称f(x)为“海宝”函数.给出下列函数:
①f(x)=x2;②f(x)=sinx+cosx;③f(x)=$\frac{x}{{x}^{2}+x+1}$;④f(x)=3x+1
其中f(x)是“海宝”函数的序号为③.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.由“正三角形的内切圆切于三边的中点”可类比猜想:正四面体的内切球切于四个面(  )
A.各正三角形内一点B.各正三角形的某高线上的点
C.各正三角形的中心D.各正三角形外的某点

查看答案和解析>>

同步练习册答案