精英家教网 > 高中数学 > 题目详情

【题目】数列满足: ,且 ,其前n项和.

(1)求证:为等比数列;

(2)记为数列的前n项和.

(i)当时,求

(ii)当时,是否存在正整数,使得对于任意正整数,都有?如果存在,求出的值;如果不存在,请说明理由.

【答案】(1)见解析(2)(i),(ii

【解析】

(1)利用当时,,进行运算,最后能证明出为等比数列;

(2)(i)利用错位相减法,可以求出

(ii)根据的奇偶性进行分类,利用差比判断数列的单调性,最后可以求出的值.

(1)当时,, 整理得

所以是公比为a的等比数列,又所以

(2)因为

(i)当

两式相减,整理得 .

(ii)因为, ∴当为偶数时,

为奇数时,,∴如果存在满足条件的正整数,则一定是偶数.∵.

∴当时, ,∴ 又

∴当时,,当时,

,即存在正整数,使得对于任意正整数都有.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知下列两个命题: 函数在[2,+∞)单调递增; 关于的不等式的解集为.若为真命题, 为假命题,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知F1 , F2是椭圆 的左、右焦点,点P在椭圆C上,线段PF2与圆x2+y2=b2相切于点Q,且点Q为线段PF2的中点,则 (其中e为椭圆C的离心率)的最小值为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某汽车公司对最近6个月内的市场占有率进行了统计,结果如表;

月份代码

1

2

3

4

5

6

市场占有率

11

13

16

15

20

21

(1)可用线性回归模型拟合之间的关系吗?如果能,请求出关于的线性回归方程,如果不能,请说明理由;

(2)公司决定再采购两款车扩大市场, 两款车各100辆的资料如表:

车型

报废年限(年)

合计

成本

1

2

3

4

10

30

40

20

100

1000元/辆

15

40

35

10

100

800元/辆

平均每辆车每年可为公司带来收入元,不考虑采购成本之外的其他成本,假设每辆车的使用寿命部是整数年,用每辆车使用寿命的频率作为概率,以每辆车产生利润的平均数作为决策依据,应选择采购哪款车型?

参考数据: .

参考公式:相关系数

回归直线方程为,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|2x﹣a|+|2x﹣1|,a∈R.
(I)当a=3时,求关于x的不等式f(x)≤6的解集;
(II)当x∈R时,f(x)≥a2﹣a﹣13,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知圆轴的左右交点分别为,与轴正半轴的交点为.

(1)若直线过点并且与圆相切,求直线的方程;

(2)若点是圆上第一象限内的点,直线分别与轴交于点,点是线段的中点,直线,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高三特长班的一次月考数学成绩的茎叶图和频率分布直方图1都受到不同程度的损坏,但可见部分如图2,据此解答如下问题:
(Ⅰ)求分数在[70,80)之间的频数,并计算频率分布直方图中[70,80)间的矩形的高;
(Ⅱ)若要从分数在[50,70)之间的试卷中任取两份分析学生失分情况,在抽取的试卷中,求至少有一份在[50,60)之间的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,圆形纸片的圆心为O,半径为5cm,该纸片上的等边三角形ABC的中心为O.D、E、F为圆O上的点,△DBC,△ECA,△FAB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)请作出该函数在长度为一个周期的闭区间的大致图象;

(2)试判断该函数的奇偶性,并运用函数的奇偶性定义说明理由;

(3)求该函数的单调递增区间.

查看答案和解析>>

同步练习册答案