精英家教网 > 高中数学 > 题目详情
3.已知椭圆M的中心在原点,焦点在x轴上,离心率为$\frac{1}{2}$,过M上一点$P({1,\frac{3}{2}})$的直线l1,l2与椭圆M分别交于不同于P的另一点A,B,设l1,l2的斜率分别为k1,k2,且${k_1}•{k_2}=-\frac{3}{4}$.
(1)求椭圆M的方程;
(2)直线AB是否过定点?若是,求出定点坐标;若不是,请说明理由.

分析 (1)设椭圆的标准方程为:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0).由题意可得:$\left\{\begin{array}{l}{\frac{c}{a}=\frac{1}{2}}\\{{a}^{2}={b}^{2}+{c}^{2}}\\{\frac{1}{{a}^{2}}+\frac{9}{4{b}^{2}}=1}\end{array}\right.$,解出即可得出.
(2)直线PA的方程为:$y-\frac{3}{2}={k}_{1}(x-1)$,与椭圆方程联立可得:$(3+4{k}_{1}^{2}){x}^{2}$+$(12{k}_{1}-8{k}_{1}^{2})$x+$4{k}_{1}^{2}$-12k1-3=0,可得xA,yA.同理可得:xB,yB.直线AB的方程为:y-yA=$\frac{{y}_{A}-{y}_{B}}{{x}_{A}-{x}_{B}}$(x-xA),令y=0,可得x为定值即可.

解答 解:(1)设椭圆的标准方程为:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0).
由题意可得:$\left\{\begin{array}{l}{\frac{c}{a}=\frac{1}{2}}\\{{a}^{2}={b}^{2}+{c}^{2}}\\{\frac{1}{{a}^{2}}+\frac{9}{4{b}^{2}}=1}\end{array}\right.$,解得a=2,b=$\sqrt{3}$,c=1.
∴椭圆M的方程为$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$.
(2)直线PA的方程为:$y-\frac{3}{2}={k}_{1}(x-1)$,
联立$\left\{\begin{array}{l}{y-\frac{3}{2}={k}_{1}(x-1)}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$,
化为:$(3+4{k}_{1}^{2}){x}^{2}$+$(12{k}_{1}-8{k}_{1}^{2})$x+$4{k}_{1}^{2}$-12k1-3=0,
∴xA=$\frac{4{k}_{1}^{2}-12{k}_{1}-3}{3+4{k}_{1}^{2}}$,yA=${k}_{1}({x}_{A}-1)+\frac{3}{2}$=$\frac{9-12{k}_{1}}{6+8{k}_{1}^{2}}$.
同理可得直线PB的方程为:$y-\frac{3}{2}={k}_{2}(x-1)$,
同理可得:xB=$\frac{4{k}_{2}^{2}-12{k}_{2}-3}{3+4{k}_{2}^{2}}$,yB=$\frac{9-12{k}_{2}}{6+8{k}_{2}^{2}}$.
∴直线AB的方程为:y-yA=$\frac{{y}_{A}-{y}_{B}}{{x}_{A}-{x}_{B}}$(x-xA),
令y=0,
化为:x=$\frac{{y}_{A}{x}_{B}-{y}_{B}{x}_{A}}{{y}_{A}-{y}_{B}}$=1.
∴直线AB过定点(1,0).

点评 本题考查了椭圆的标准方程及其性质、直线与椭圆相交问题、直线的斜率计算公式与直线方程,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.与两个相交平面的距离都相等的点必在(  )
A.一条直线上B.一个平面上C.两条直线上D.两个平面上

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知sin($\frac{7π}{2}$-α)=$\frac{1}{3}$,且2kπ+π<α<2kπ+$\frac{3π}{2}$(k∈Z),则$\frac{1}{sin(α-7π)}$的值是(  )
A.$\frac{2\sqrt{3}}{3}$B.$\frac{3\sqrt{2}}{4}$C.-2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.给出以下命题:
①f(x)=tanx的图象关于点(kπ+$\frac{π}{2}$,0)(k∈Z)对称;
②f(x)=-cos(kπ+x)(k∈Z)是偶函数;
③f(x)=cos|x|的最小正周期为π的周期函数;
④y=3|sinx|+4|cosx|的最大值为5;
⑤y=sin2x-cosx的最小值为-1.
其中所有真命题序号是①②④⑤.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若sin2β-sin2α=m,则sin(α+β)sin(α-β)=-m.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设函数f(x)=4x3+x-8,用二分法求方程4x3+x-8=0在x∈(1,3)内近似解的过程中,通过计算得:f(2)>0,f(1.5)>0,则方程的解落在区间(  )
A.(1,1.5)B.(1.5,2)C.(2,2.5)D.(2.5,3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知点C在以O为圆心的圆弧AB上运动(含端点).$\overrightarrow{OA}•\overrightarrow{OB}=0$,$\overrightarrow{OC}$=x$\overrightarrow{OA}$+2y$\overrightarrow{OB}$(x,y∈R),则$\frac{x}{2}+y$的取值范围是(  )
A.$[-\frac{{\sqrt{2}}}{2},\frac{{\sqrt{2}}}{2}]$B.$[\frac{1}{2},\frac{{\sqrt{2}}}{2}]$C.$[-\frac{1}{2},\frac{1}{2}]$D.$[-\frac{{\sqrt{2}}}{2},\frac{1}{2}]$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)=x2+ax+b的零点是-3和1,则函数g(x)=log2(ax+b)的零点是2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.下列函数中,既是偶函数又是区间(0,+∞)上的增函数的有②④.(填写所有符合条件的序号)
①y=x3②y=|x|+1    ③y=${x}^{\frac{3}{2}}$   ④$y=\left\{\begin{array}{l}{lnx(x>0)}\\{ln(-x)(x<0)}\end{array}\right.$.

查看答案和解析>>

同步练习册答案