精英家教网 > 高中数学 > 题目详情
“a≥0,b≥0”是“
a+b
2
ab
”的(  )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、既不充也不必要条件
考点:必要条件、充分条件与充要条件的判断
专题:简易逻辑
分析:根据基本不等式的性质,以及利用充分条件和必要条件的定义进行判断即可.
解答: 解:由a≥0,b≥0可得
a+b
2
ab

反之,若
a+b
2
ab
,则ab≥0,可得a≥0,b≥0.
故“a≥0,b≥0”是“
a+b
2
ab
”的充要条件.
故选:C.
点评:本题主要考查充分条件和必要条件的判断,利用基本不等式的性质是解决本题的关键,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数y=Asin(ωx+φ) (ω>0,φ∈(-
π
2
π
2
))
的最小正周期为π,且其图象关于直线x=
π
12
对称,则下面四个结论:
①图象关于点(
π
4
,0)
对称;     
②图象关于点(
π
3
,0)
对称;
③在[0,
π
12
]
上是增函数;        
④在[-
π
12
,0]
上是减函数;
正确结论的编号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若双曲线C:2x2-y2=m(m>0)与抛物线y2=8x的准线交于A,B两点,且|AB|=2
3
,则实数m的值为(  )
A、29B、20C、12D、5

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法正确的是(  )
A、梯形可以确定一个平面
B、圆心和圆上两点可以确定一个平面
C、两条直线a,b没有公共点,那么a与b是异面直线
D、若a,b是两条直线,α,β是两个平面,且a?α,b?β,则a,b是异面直线

查看答案和解析>>

科目:高中数学 来源: 题型:

实数x,y满足 
x+2y≥3
x+3y≤4
x+6y≥5
   则z=x-3y的最小值为(  )
A、-2
B、-1
C、
1
2
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆Γ的焦点为F1(-1,0)、F2(1,0),点M(1,
3
2
)
在椭圆Γ上.
(1)求椭圆Γ的方程;
(2)设双曲线Σ:
x2
a2
-
y2
b2
=1(a>0,b>0)的顶点A、B都是曲线Γ的顶点,经过双曲线Σ的右焦点F作x轴的垂线,与Σ在第一象限内相交于N,若直线MN经过坐标原点O,求双曲线Σ的离心率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C1、抛物线C2的焦点均在x轴上,C1的中心和C2的顶点均为原点O,从每条曲线上取两个点,将其坐标记录如下:A1(3,-2
3
)、A2(-2,0)、A3(4,-4)、A4
2
2
2
).
(Ⅰ)经判断点A1,A3在抛物线C2上,试求出C1、C2的标准方程;
(Ⅱ)求抛物线C2的焦点F的坐标并求出椭圆C1的离心率;
(Ⅲ)过C2的焦点F直线l与椭圆C1交不同两点M,N,且满足
OM
ON
,试求出直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1﹙a>0,b>0﹚,F1,F2是其左右焦点,若椭圆的离心率为
1
2
,椭圆的焦点到相应准线的距离为3,
(1)求椭圆的标准方程;
(2)椭圆上是否存在一点M,使点M到其左准线的距离MN是MF1,MF2的等比中项?若存在,求出该点的坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

学校设计了一个实验学科的考查方案:考生从6道备选题中一次随机抽取3道题,按照题目要求独立完成全部实验操作,并规定:在抽取的3道题中,至少正确完成其中2道题便可通过考查.已知6道备选题中考生甲有4道题能正确完成,2道题不能完成;考生乙每题正确完成的概率都为
2
3
,且每题正确完成与否互不影响.
(1)求考生甲正确完成题目个数ξ的分布列和数学期望;
(2)用统计学知识分析比较甲、乙两考生哪位实验操作能力强及哪位通过考查的可能性大?

查看答案和解析>>

同步练习册答案