精英家教网 > 高中数学 > 题目详情

已知的定义域为,求下列函数的定义域:

(1);     (2)y=

 

【答案】

(1)-1]

(2)[-1,1]

【解析】思路分析:

1)题意分析:区间是函数中的x的取值范围,函数的定义域是中的x的取值范围,它由的取值范围来确定,第二问可同理解决。

2)解题思路:解决本题关键在于理解“”和“”的取值范围就是

解:(1)的定义域为

解得因此的定义域为-1]

(2)的定义域为,∴中的x必须满足

,|x|,∴,故y=f(x2)的定义域是[-1,1]。                          

解题后的思考:的对应法则不是“f”,而是由“f”和“取倒数”复合而成的,函数y=的对应法则是由“f”和“平方”复合而成的. 另外在解时要注意,不要出错,应该是|x|,而不是

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)已知函数f(x)=
x-7
(a-1)x2+4
a-1
•x+5
的定义域为R,求实数a的取值范围;
(2)不等式x-1<2mx+3-m对于满足0≤m≤2的一切实数m都成立,求x的取值范围;
(3)设∫:A→B是从集合A到集合B的映射,在∫的作用下集合A中元素(x,y)与集合B元素(2x-1,4-y)对应,求与B中元素(0,1)对应的A中元素.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的定义域为(0,+∞),若y=
f(x)
x
在(0,+∞)上为增函数,则称f(x)为“一阶比增函数”;若y=
f(x)
x2
在(0,+∞)上为增函数,则称f(x)为“二阶比增函数”.我们把所有“一阶比增函数”组成的集合记为Ω1,所有“二阶比增函数”组成的集合记为Ω2
(Ⅰ)已知函数f(x)=x3-2hx2-hx,若f(x)∈Ω1,且f(x)∉Ω2,求实数h的取值范围;
(Ⅱ)已知0<a<b<c,f(x)∈Ω1且f(x)的部分函数值由下表给出,
x a b c a+b+c
f(x) d d t 4
求证:d(2d+t-4)>0;
(Ⅲ)定义集合Φ={f(x)|f(x)∈Ω2,且存在常数k,使得任取x∈(0,+∞),f(x)<k},请问:是否存在常数M,使得?f(x)∈Φ,?x∈(0,+∞),有f(x)<M成立?若存在,求出M的最小值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)选修4-2:矩阵与变换
若矩阵A有特征值λ1=2,λ2=-1,它们所对应的特征向量分别为e1=
1
0
e2=
0
1

(I)求矩阵A;
(II)求曲线x2+y2=1在矩阵A的变换下得到的新曲线方程.
(2)选修4-4:坐标系与参数方程
已知曲线C1的参数方程为
x=2sinθ
y=cosθ
为参数),C2的参数方程为
x=2t
y=t+1
(t
为参数)
(I)若将曲线C1与C2上所有点的横坐标都缩短为原来的一半(纵坐标不变),分别得到曲线C′1和C′2,求出曲线C′1和C′2的普通方程;
(II)以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,求过极点且与C′2垂直的直线的极坐标方程.
(3)选修4-5:不等式选讲
设函数f(x)=|2x-1|+|2x-3|,x∈R,
(I)求关于x的不等式f(x)≤5的解集;
(II)若g(x)=
1
f(x)+m
的定义域为R,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b是方程4x2-4kx-1=0(k∈R)的两个不等实根,函数f(x)=
2x-k
x2+1
的定义域为[a,b].
(1)当k=0时,求函数f(x)的值域;
(2)证明:函数f(x)在其定义域[a,b]上是增函数;
(3)在(1)的条件下,设函数g(x)=x3-3m2x+
3
5
 
(-
1
2
≤x≤
1
2
 0<m<
1
2
)
,若对任意的x1∈[-
1
2
1
2
]
,总存在x2∈[-
1
2
1
2
]
,使得f(x2)=g(x1)成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的定义域为R,且满足f(x+2)=-f(x)?.
(1)求证:f(x)是周期函数;
(2)若f(x)为奇函数,且当0≤x≤1时,f(x)=
1
2
x,求f(x)在[-1,3]的解析式;
(3)在(2)的条件下.求使f(x)=-
1
2
在[0,2 011]上的所有x的个数.

查看答案和解析>>

同步练习册答案