精英家教网 > 高中数学 > 题目详情
11.双曲线$\frac{{x}^{2}}{m}-\frac{{y}^{2}}{3+m}$=1的一个焦点为(2,0),则m的值为(  )
A.$\frac{1}{2}$B.1或3C.$\frac{1+\sqrt{2}}{2}$D.$\frac{\sqrt{2}-1}{2}$

分析 利用双曲线方程以及焦点坐标,列出m的关系式,求解即可.

解答 解:∵双曲线$\frac{{x}^{2}}{m}-\frac{{y}^{2}}{3+m}$=1的焦点为(2,0),在x轴上且c=2,
∴m+3+m=c2=4.∴m=$\frac{1}{2}$.
故选:A.

点评 本题考查双曲线的简单性质的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知点A(1,3),B(4,-1),则与向量$\overrightarrow{AB}$反方向的单位向量的坐标为(  )
A.$(\frac{3}{5},-\frac{4}{5})$B.$(\frac{4}{5},\frac{3}{5})$C.$(-\frac{3}{5},\frac{4}{5})$D.$(-\frac{4}{5},\frac{3}{5})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设a>0且a≠1函数f(x)=ax+x2-xlna-a
(1)当a=e时,求函数f(x)的单调区间;(其中e为自然对数的底数)
(2)求函数f(x)的最小值;
(3)指出函数f(x)的零点个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知复数z=$\frac{1+3i}{3-i}$,则z的虚部为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{5},x∈[-1,1]}\\{x,x∈[1,π)}\\{sinx,x∈[π,3π]}\end{array}\right.$求f(x)在区间[-1,3π]上的定积分.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数y=x2-2x的递减区间为(  )
A.(-∞,1)B.(0,1)C.(1,+∞)D.(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知m∈R,复数z=(m2+5m+6)+(m2-2m-15)i.
(1)若z与复数2-12i相等,求m的值;
(2)若z与复数12+16i互为共轭复数,求m的值;
(3)若z对应的点在x轴上方,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在△ABC中,D是边AB上的中点,记$\overrightarrow{BC}$=$\overrightarrow{a}$,$\overrightarrow{BA}$=$\overrightarrow{c}$,则向量$\overrightarrow{CD}$=(  )
A.-$\overrightarrow{a}$-$\frac{1}{2}$$\overrightarrow{c}$B.$\overrightarrow{a}$-$\frac{1}{2}$$\overrightarrow{c}$C.-$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow{c}$D.$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow{c}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知x,y∈R,i是虚数单位,且(2x+i)(1-i)=y,则y的值为(  )
A.-1B.1C.-2D.2

查看答案和解析>>

同步练习册答案